CHARLES WILLIAMS STREAM, WETLAND, AND BUFFER SITE DMS Project No. 80

MONITORING YEAR 5 (2017) Construction Completed February 2013 Planting Completed February 2014

Randolph County, NC State Construction Project No. 07-07125-01A

Prepared for the NC Department of Environmental Quality Division of Mitigation Services

> 1652 Mail Service Center Raleigh, NC 27699-1652

December 2017

Prepared by:

1151 SE Cary Parkway, Suite 101 Cary, NC 27518 919.557.0929 www.ecologicaleng.com

Davidlo-Cooper

David G. Cooper, Project Scientist

Under Contract With:

This assessment and report are consistent with NCDEQ Division of Mitigation Services Template Version 1.4 (11/07/11) for Monitoring Reports.

TABLE OF CONTENTS

		<u>1 ugo</u>
1.0 EXECU	TIVE SUMMARY/PROJECT ABSTRACT	1
1.1	Goals and Objectives	
1.2	Background Summary	1
1.3	Vegetation Condition and Comparison to Success Criteria	2
1.4	Stream Stability/Condition and Comparison to Success Criteria	3
1.5	Wetland Condition and Performance Relative to Success Criteria	3
1.6	Other Information	3
		_
2.0 METHO	DOLOGY	5
3.0 REFERE	ENCES	6
APPENDIX	A. Project Vicinity Map and Background Tables	
Figure	e 1. Vicinity Map	
	1. Project Components and Mitigation Credits	
	2. Project Activity and Reporting History	
	3. Project Contact Table	
Table	4. Project Baseline Information and Attributes	
APPENDIX	B. Visual Assessment Data	
Figure	e 2. Mitigation Components	
Figure	3 Current Condition Plan View (CCPV)	

Page

Figure 2. Mitigation Components Figure 3. Current Condition Plan View (CCPV) Table 5. Visual Stream Morphology Stability Assessment Table Table 6. Vegetation Condition Assessment Table Photograph Comparisons

APPENDIX C. Vegetation Plot Data

Planted Vegetation Summary Proposed Supplemental Planting Letter Original Planting List from DMS Table 7. Vegetation Plot Mitigation Success Summary Table Table 8. CVS Vegetation Metadata Table Table 9. CVS Stem Count Total and Planted by Plot and Species

APPENDIX D. Stream Survey Data

Cross Section Plot Exhibits Longitudinal Profile Plot Exhibit Cross Section Pebble Count Exhibits Table 10. Baseline Stream Data Summary Table 11. Monitoring Data

APPENDIX E. Hydrology Data

Table 12. Verification of Bankfull Events2017 Precipitation Data Chart

APPENDIX F. Detailed Thalweg Profile

Detailed Thalweg Longitudinal Profile Plot Exhibits

1.0 EXECUTIVE SUMMARY/ PROJECT ABSTRACT

The Charles Williams Stream, Wetland and Buffer Site, hereinafter referred to as the "Project Site" or "Site," is located in Randolph County, North Carolina, within US Geological Survey (USGS) 8-digit Hydrologic Unit Code (HUC) 03030003 and NC Division of Water Resources (NCDWR) sub-basin 03-06-09 of the Cape Fear River Basin (Figure 1). The project involved the enhancement of 1,850 linear feet of an unnamed tributary (UT) to Sandy Creek, 2.2 acres of wetlands and 8.8 acres of riparian buffer. The Site is protected for perpetuity under a conservation easement purchased from Mr. Charles Williams in 2006. Project restoration components, activity and reporting history, contacts and attribute data are all provided in Appendix A.

1.1 Goals and Objectives

The Project's goals were to:

- reduce nutrient and sediment water quality stressors;
- provide for uplift in water quality functions;
- improve instream and wetland aquatic habitats, including riparian terrestrial habitats; and,
- provide for greater overall instream and wetland habitat complexity and quality.

Stream enhancement, the primary component, served as the dominant input for achieving this goal.

No restoration goals were identified in the Cape Fear River Basinwide Management Plan (NCDWQ, 2005) with regard to the Sandy Creek watershed. There were no sources or stressors listed for the watershed area associated with the Project Site. The NC Department of Environmental Quality (NCDEQ) Division of Mitigation Services (DMS) develops River Basin Restoration Priorities (RBRP) to guide its restoration activities within each of the state's 54 cataloging units. RBRPs delineate specific watersheds that exhibit both the need and opportunity for wetland, stream and riparian buffer restoration. These watersheds are called Targeted Local Watersheds (TLWs) and receive priority for DMS planning and restoration project funds. The 2009 Draft Cape Fear River RBRP identified HUC 03030003020010, which includes the Project Site, as a Targeted Local Watershed. The following information is taken directly from the RBRP. "...This is a largely rural hydrologic unit (HU). The main stream, Sandy Creek, flows through Randolph County to Sandy Creek Reservoir, a drinking water supply for Ramseur and Franklinville. As of 2006, the HU had no streams on DWQ's list of impaired waters; however, the reservoir shows indications of high nutrient levels, likely related to the large number of animal operations in the HU. The HU is a Water Supply Watershed and a long portion of Sandy Creek is recognized by the State's Natural Heritage Program as a Significant Natural Heritage Area. DMS has been active in the HU with five projects that include components of preserving wetlands (3 acres) and streams (5,100 linear feet) and restoring wetlands (15 acres) and streams (15,000 linear feet). Piedmont Land Conservancy has also been active in protecting streamside buffers in the HU. Continued implementation of practices to reduce nutrient inputs to Sandy Creek Reservoir is recommended for this HU."

1.2 Background Summary

The Project Site is situated in northeastern Randolph County, approximately four miles west of Liberty and six miles north of Ramseur (Figure 1). It is bordered to the north and west by undeveloped land, to the east by SR 2442 (Ramseur-Julian Road), and to the south by Sandy Creek. Northeastern Randolph Middle School is on the property opposite of Sandy Creek, to the south. The Project Site can be accessed by using the following directions from US Highway 64.

- Turn north on US 421 in Siler City, towards the Town of Liberty.
- Proceed approximately 9.5 miles and turn south (left) onto NC 49.
- Proceed approximately 0.7 miles along NC 49 and turn north (right) onto SR 2459 (Sandy Creek Church Road).
- Follow Sandy Creek Church Road approximately 4.5 miles until it intersects with Ramseur-Julian Road and turn north (right),
- Follow Ramseur-Julian Road approximately 0.3 miles, crossing over Sandy Creek. The Charles Williams Site is on the west (left) side of the roadway, immediately north of Sandy Creek.

Situated in the Piedmont physiographic province and the Cape Fear River Basin, the Project Site encompasses 18 acres of former pasture and existing riparian forest. Elevations across the Site range between approximately 550 and 560 feet above Mean Sea Level. The following chart depicts pre-implementation existing condition information regarding the Site.

		<u> </u>	
Physiographic Province	Piedmont	County	Randolph
River Basin Name	Cape Fear	Property Owner Name	Charles Williams
USGS 8-digit HUC	03030003		
USGS 14-digit HUC	03030002020010	Stream #1 Name	UT to Sandy Creek
NCDWQ Subbasin	03-06-09	Drainage Area	4.9 sq. mi.
Underlying Mapped Soil(s)	Chewacla loam	NCDWQ Score	(Perennial)
Drainage Class	Somewhat poorly drained	Rosgen Classification	Č5
Hydric Status	В	-	
Slope	0-2 %		
Available Water Capacity	Moderate to High		
FEMA Classification	Zone AE		
Invasive Vegetation Observed	Multiflora rose (Rosa multif	lora)	
-	Chinese privet (Ligustrum :	sinense)	

Pre-Implementation Existing Conditions Summary

1.3 Vegetation Condition and Comparison to Success Criteria

While stream construction was completed in 2013, final planting was not completed until February, 2014. For this reason, stream monitoring is in its 5th and final year, while vegetation monitoring is in its 4th year. A final vegetation monitoring will be performed in 2018 to complete Year 5 of vegetation monitoring.

Vegetation success criteria are consistent with the US Army Corps of Engineers (USACE) Wilmington Regulatory District's guidance for stream and wetland mitigation and the NCDWR guidance for riparian buffer credit. The USACE guidance requires the survival of a minimum of 320 planted woody stems/acre after Monitoring Year 3 (MY3). A mortality rate of 10% is allowed after MY4 assessments (288 stems/acre) and, correspondingly, after MY5 assessments (260 stems/acre). The NCDWR guidance requires survival of at least 320 native, planted, hardwood stems/acre (trees only) at the end of the MY 5 to successfully earn riparian buffer credit.

Vegetation is currently being assessed using plot layouts consistent with the Carolina Vegetation Survey (CVS) Level II Vegetation Protocol. Stem count data is obtained from 12 permanently placed 10-meter² vegetation plots (Figures 3a and 3b). Assessments include counts of both planted and natural stems. Due to low stem counts during MY2, supplemental planting of species in the original planting list at approximately 300 stems per acre was performed between December 2014 and March 2015. Additional supplemental planting of 230 total stems was also performed on February 6, 2017.

Based on the current monitoring effort, 6 of 8 vegetation plots met the minimum success criteria established for MY4 stream/wetland mitigation criteria and 8 of 12 plots met the criteria for riparian buffer credit. Appendices B and C depict more detailed information regarding the vegetation condition, including annual photograph comparisons.

Due to the random placement of vegetation plots, only one of the eight plots associated with stream/wetland credit is currently placed within the wetland enhancement area (Vegetation Plot #6). The remaining seven plots are situated in areas not originally proposed as wetland enhancement.

1.4 Stream Stability/Condition and Comparison to Success Criteria

Enhancement (Level I) of the UT utilized natural channel design methodologies consistent with Priority Level IV stream restoration protocols. These protocols specifically include the stabilization of the existing channel in place. To document successful stabilization, a minimum of two bankfull events must be documented within the standard five-year monitoring period. In order for the hydrology-based monitoring to be considered complete, the two events must occur in separate monitoring years.

Evidence of overbank events was documented on February 10, 2017 and July 20, 2017. Evidence of overbank events consisted of wrack material and sediment staining above the bankfull indicators along the channel, alluvial deposits outside the channel, and flattened vegetation far into the floodplain. The crest gauge documented bankfull events at 31.5" and 28" during MY5. Annual photograph comparisons of the stream channel are depicted in Appendix B and hydrologic data associated with this year's monitoring assessment are provided in Appendix E.

1.5 Wetland Condition and Performance Relative to Success Criteria

Wetland enhancement work was performed throughout the existing wetland areas. Prior to enhancement, these wetlands were severely degraded as a result of continuous soil compaction and grazing from livestock. The enhancement work included livestock removal via exclusion fencing and supplemental plantings. Benefits of the enhancement include water quality improvement by trapping nutrients such as nitrogen and phosphorous, toxic substances, and disease-causing microorganisms. Wetlands also slow and intercept surface runoff, protect stream banks from erosion, protect upland areas from flooding, and provide valuable habitat for wildlife.

1.6 Other Information

Summary information/data related to the occurrence of items such as beaver dams or encroachment, and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the DMS website. All raw data supporting the tables and figures in the appendices is available from DMS upon request.

During MY2 monitoring, a recently constructed beaver dam was observed within the channel at approximately station 14+34.75, near cross-section 1. In May of 2015 during MY3 monitoring, another recently constructed beaver dam was observed immediately upstream of the culverted road crossing at approximately station 19+51.50. During June of 2015, these dams were removed by hand and beaver trapping was conducted by APHIS. No additional beaver activity was observed within the easement area until October 4, 2016, at which time the beaver dam upstream of the road crossing was observed to have been reconstructed. During 2017/MY5 monitoring, the beaver dam upstream of

the road crossing was gone again, but the dam near cross-section 1 had been reconstructed as of September 8, 2017. This dam was again removed in November, 2017 and was not observed to have been reconstructed as of December 8, 2017. Please refer to Appendix B for representative photographs.

During late MY3 or early MY4, the large beaver impoundment at the upstream end of the project area was breached. It is not clear whether the breach was intentional, or whether the dam naturally breached as a result of a storm event. In February 2016, evidence of very high water and strong overbank flow was observed, likely from this breach, but a full assessment of the channel was not possible at the time due to high water and turbidity. Banks were observed to be generally stable and vegetated, and no structure instability or failure was observed. The large beaver dam was not reconstructed as of September 8, 2017 during MY5 monitoring.

Prior to MY3, stream stability monitoring longitudinal profile survey data representing the state of the UT from the upstream, northern easement boundary downstream to the southern easement boundary was collected at widely spaced intervals, providing a low resolution depiction of channel morphology. Survey data from MY3 on was collected at a higher resolution, allowing a more detailed comparison of the stream bed over time. Please refer to Appendix D for a comparison of MY5 longitudinal profile data with previous monitoring data. Although the more detailed longitudinal profile added survey points to the profile, key grade control locations (heads of runs, riffles, and structures) have maintained their elevations over the course of monitoring. A comparison of high resolution MY3, MY4, and MY5 data shows possible sediment accumulation near the downstream end of the UT, likely caused by the large water release from the upstream beaver impoundment. Also visible in the longitudinal profile for MY5 is an area of apparent downcutting in the vicinity of stream station 11+00 -11+50. This reach is not far downstream of the large, removed beaver dam, and it is possible that sediment is being transported downstream from this area during high flow events now that the dam has been removed. The remainder of the longitudinal profile indicates that the grade of the stream bed is holding. Based on the data available to us at this time, including the fact that no obvious visual evidence of instability (bank scour, erosion, etc.) was observed, the downcutting is not expected to progress. An additional Appendix F is provided to depict the detailed longitudinal profile of the channel thalweg. For ease of comparison, this appendix consists of four sheets, each showing a reach of the channel thalweg at a larger scale than the chart in Appendix D.

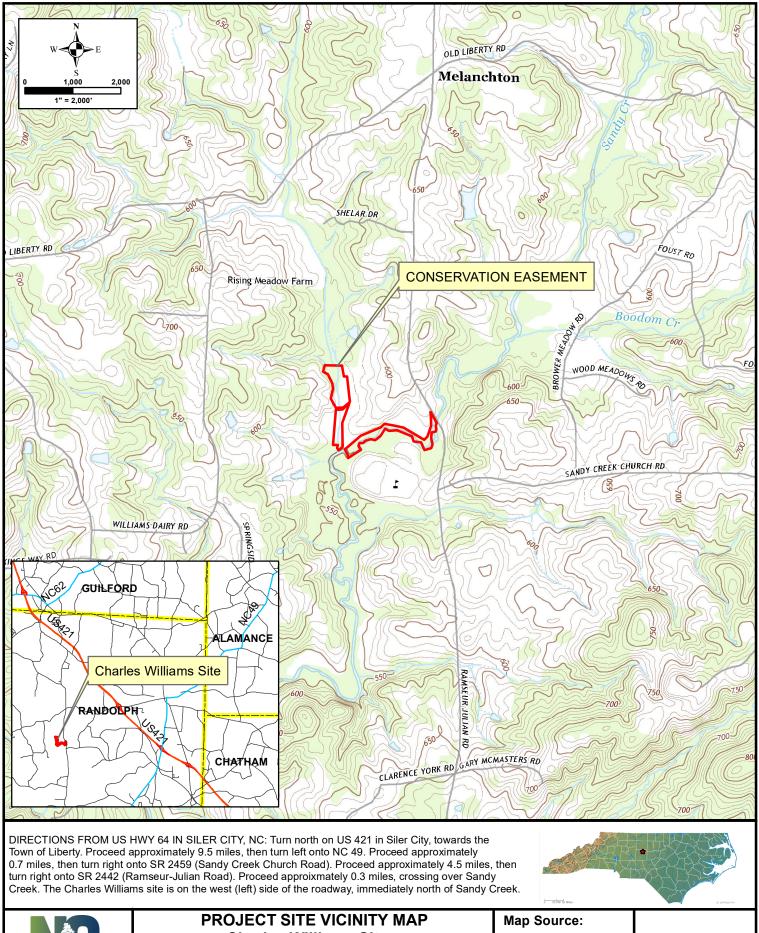
2.0 METHODOLOGY

This monitoring report follows methodology consistent with DMS's Procedural Guidance and Content Requirements for Monitoring Reports (Version 1.4, dated 11/07/11), available at the DMS website (http://portal.ncdenr.org/web/eep).

All surveys were performed via total station and survey grade Global Positioning System (GPS). Each survey point has three-dimensional coordinates and is tied to survey control points. Longitudinal profile stationing was originally developed based on the design stationing, and follows the UT from the northern to the southern property boundary (upstream to downstream) as depicted on the survey plat. Based on comments from DMS during the review of the draft MY2 monitoring report, the MY3 longitudinal profile survey incorporated more detailed data collection to more accurately represent changes in channel morphology over time. The same level of detail was collected during MY4 and MY5 channel surveys. As the MY3 survey was a more complete longitudinal profile, channel stationing is more accurate than that shown in previous longitudinal profiles. In order to compensate for differences in stationing, channel survey shots from previous monitoring years were viewed in plan view and compared to MY3 channel stations. Stationing of previous years' shots was adjusted to reflect the more accurate MY3 channel stationing. Similarly, stationing of MY4 and MY5 data points was also adjusted based on the MY3 channel stationing. Appendix D includes an overlay of channel survey data based on this adjusted stationing.

Particle size distribution protocols followed the Wolman Pebble Count Procedure, which requires an observer with a metric ruler to measure particles based on their intermediate axis. This information is correlated into a graph depicting a particle size analysis of each cross section.

Vegetation assessments were conducted using the CVS protocol (Version 4.2). As part of this protocol, vegetation is assessed using 100-meter² plots, or modules. The scientific method requires that measurements be as unbiased as possible, and that they be repeatable. Plots are designed to achieve both of these objectives; in particular, different people should be able to inventory the same plot and produce similar data (Lee et. al., 2006). According to Lee et. al. (2006), there are many different goals in recording vegetation, and both time and resources for collecting plot data are extremely variable. To provide appropriate flexibility in project design, the CVS protocol supports five distinct types of vegetation plot records, which are referred to as levels in recognition of the increasing level of detail and complexity across the sequence. The lower levels require less detail and fewer types of information about both vegetation and environment, and thus are generally sampled with less time and effort (Lee et. al., 2006). Level 1 (Planted Stem Inventory Plots) and Level 2 (Total Woody Stem Inventory Plots) inventories were completed on all 12 of the vegetation plots at the Project Site.


A crest gauge was installed near the downstream end of the Site along the UT to verify the on-site occurrences of bankfull events. In addition to the crest gauge, observations of recently deposited overbank wrack and/or sediment serve to validate gauge observations, as necessary. Documentation of the highest stage during the monitoring interval is assessed during each site visit and the gauge is reset. The data related to bankfull verification are summarized in each year's report. Based on the elevation of the crest gauge, any readings observed higher than 22 inches on the gauge reflect a bankfull or above bankfull event.

3.0 REFERENCES

- Lee, Michael T., R.K. Peet, S.D. Roberts and T.R. Wentworth, 2006. CVS Protocol for Recording Vegetation, Version 4.0 (<u>http://cvs.bio.unc.edu/methods.htm</u>).
- NCDENR Division of Water Quality (NCDWQ) , 2005. Cape Fear River Basinwide Management Plan. Available at: <u>http://portal.ncdenr.org/web/wq/ps/bpu/basin/capefear</u>.
- NCDENR Ecosystem Enhancement Program, 2013. Charles Williams Stream, Wetland, and Buffer Site Baseline Monitoring Document and As-built Baseline Report. Prepared by Ecological Engineering, LLP.
- NCDEQ Division of Mitigation Services, 2015. Charles Williams Stream, Wetland, and Buffer Site Monitoring Year 3 Final Report. Prepared by Ecological Engineering, LLP.
- NCDEQ Division of Mitigation Services, 2016. Charles Williams Stream, Wetland, and Buffer Site Monitoring Year 4 Final Report. Prepared by Ecological Engineering, LLP.
- NC State Climate Office, 2017. Daily Precipitation Data from Siler City Airport (SILR), Chatham County (<u>www.nc-climate.ncsu.edu</u>).
- US Army Corps of Engineers, US Environmental Protection Agency, NC Wildlife Resources Commission and NC Department of Environment Division of Water Quality, 2003. Stream Mitigation Guidelines.

APPENDIX A

Project Vicinity Map and Background Tables

Environmental Quality

Charles Williams Site -DMS Project No. 80

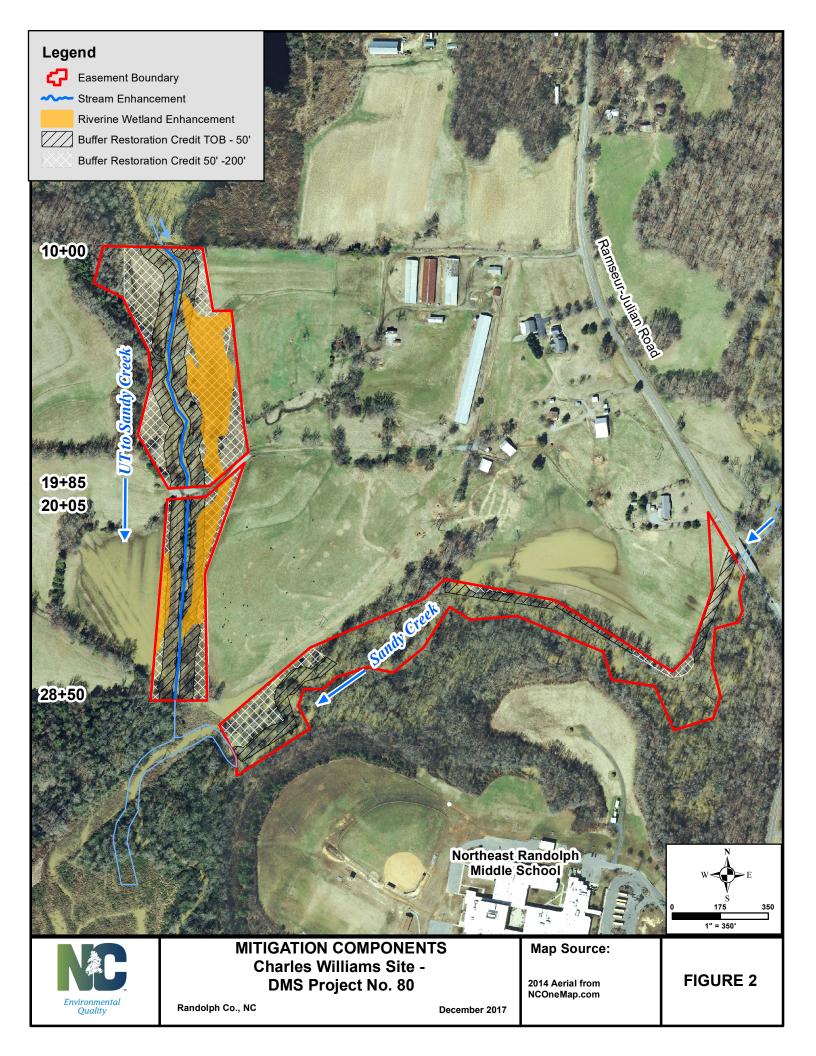
2013 Grays Chapel and Liberty USGS Quadrangles FIGURE 1

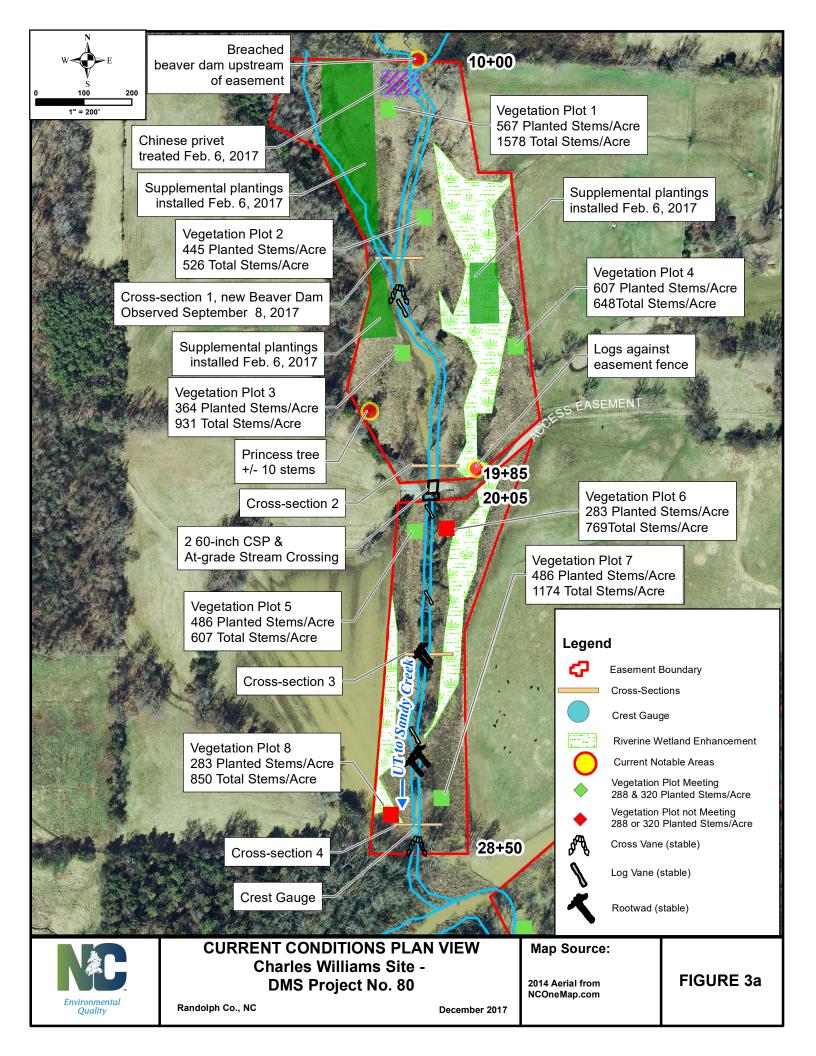
Randolph Co., NC

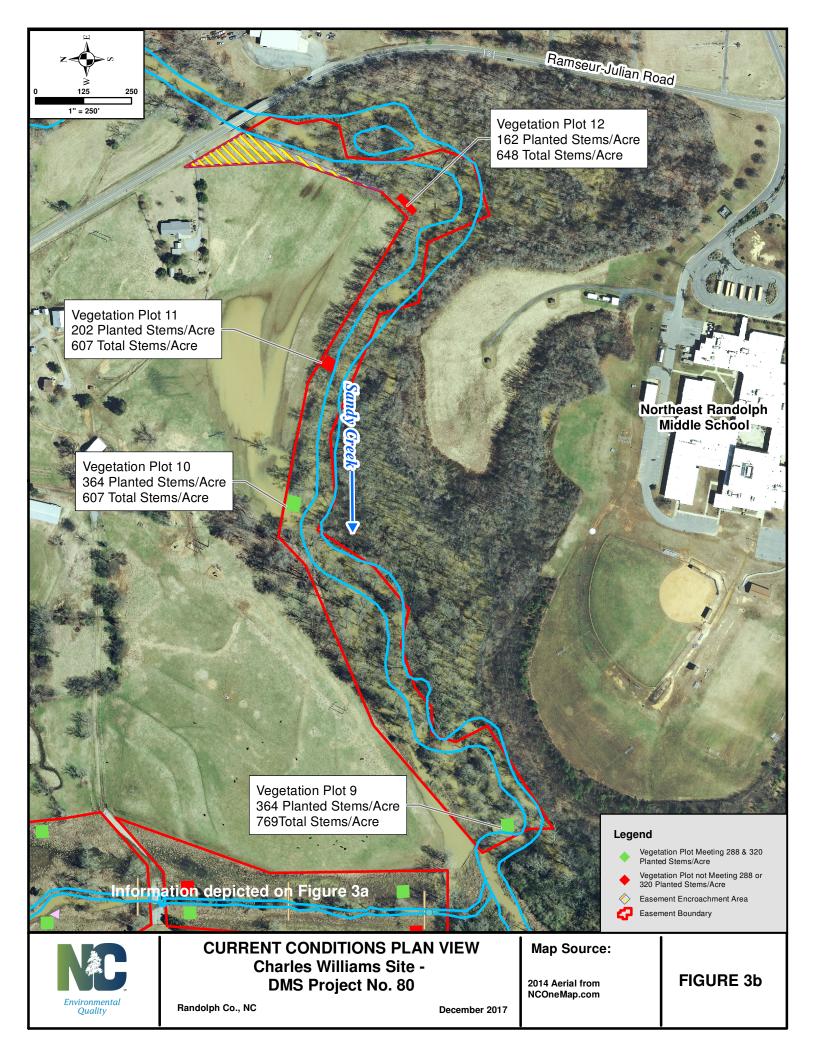
December 2017

		Tab		-	mponents Stream, Wetla		ation Credit	S	
					Mitigation Cre				
		Stream	Riparian	Wetland	Non-ripar	ian wetland	Buffer	Nitrogen Nutrient Offset	Phosphorus Nutrient Offset
Туре	R	RE	R	RE	R	RE			
Totals		1,233		1.1			336,430		
					Project Compor	ients			
Project Component	:	Stationin	ng/Location		ng Footage/ creage	Approach	Restoration or Restoration Equivalent	Restoration Footage or Acreage	Mitigation Ratio
Stream Enhancemer	ıt	10+00	to 27+53	1,850) linear feet	EI	RE	1,233	1.5 : 1
Riparian Wetland Enhancement			and west of U ndy Creek	T 2.	2 acres	Е	RE	1.1	2 : 1
Buffer Restoration (TOB - 50')		Sanc	eek and UT to ly Creek	201,48	1 square feet	R	R	201,481	1:1
Buffer Restoration (50 - 200'))'		eek and UT to ly Creek	182,90	7 square feet	R	R	182,907	1:1
				C	omponent Sumi	mation			
Restoration Leve	I	Stream (linear feet)	Riparian V	Wetland (acres)		oarian Wetland (acres)	Buffer (square feet)	Upland (acres)
				Riverine	Non-riverine				
Restoration								384,208	
Enhancement				2.2					
Enhancement I		1,	850						
Enhancement II									
Creation									
Preservation HQ Preservation									
	<u> </u>				BMP Elemen	ts			
Element		Loc	ation	Purpo	se/Function		N	lotes	
BMP Elements							· DDP = Drv Detenti		

BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Detention Pond; FS = Filter Strip; S = Grassed Swale; LS = Level Spreader; NI = Natural Infiltration Area; FB = Forested Buffer.


-	vity and Reporting Histo m Wetland and Buffer Site / 8	•
Elapsed Time Since Grading	Complete (Feb 2013): 4 years, 9 months	
Elapsed Time Since Planting	Complete (Feb 2014): 3 years, 9 months	
Number of	Reporting Years: 5	
Activity or Report	Data Collection Complete	Completion or Delivery
Mitigation Plan	September-08	May-09
Final Design - Construction Plans	November-09	April-12
Construction		February-13
Temporary S&E Mix Applied to Entire Project Area		January-13
Permanent Seed Mix Applied to Entire Project Area		January-13
Live Stake Plantings Applied		January-13
Baseline Monitoring Document	June-13	July-13
Bare-rooted Planting Applied		February-14
Year 1 Monitoring	March-14	May-14
Year 2 Monitoring	September-14	November-14
Year 3 Monitoring	June-15	November-15
Year 4 Monitoring	July-16	N ov ember-16
Year 5 Monitoring	July/Sept17	November-17
Year 6 Monitoring (vegetation only)		


Table 3. Project Charles Williams Stream W	
Designer	Firm Information/ Address
Ecological Engineering, LLP	1151 SE Cary Parkway, Suite 101, Cary, NC 27518
Jenny S. Fleming, PE	(919) 557-0929
Construction Contractor	Firm Information/ Address
Riverworks, Inc.	8000 Regency Parkway, Suite 800, Cary, NC 27518
Bill Wright	(919) 459-9001
Hauling Contractor	Firm Information/ Address
Strader Fencing, Inc.	5434 Amick Road, Julian, NC 27283
	(336) 697-7005
Planting Contractor(s)	Firm Information/ Address
Carolina Silvics, Inc. (bare-rooted & containerized)	908 Indian Trail Road, Edenton, NC 27932
Mary-Margaret S. McKinney, RF, PWS	(252) 482.8491
Riverworks, Inc. (livestakes only)	8000 Regency Parkway, Suite 800, Cary, NC 27518
George Morris	(919) 459-9001
Seeding Contractor	Firm Information/ Address
Strader Fencing, Inc.	5434 Amick Road, Julian, NC 27283
Kenneth L. Strader	(336) 697-7005
Seed Mix Sources	Green Resource, LLC (336) 855-6363
Nursery Stock Suppliers (live stakes only)	Native Roots Nursery (910) 385-8385 NC Forest Service Tree Nursery (919) 731-7988 Foggy Mountain Nursery (336) 384-5323 Mellow Marsh Farm (919) 742-1200
Monitoring Performer	Firm Information/ Address
Ecological Engineering, LLP	1151 SE Cary Parkway, Suite 101, Cary, NC 27518
David Cooper, Heather Smith, Lane Sauls (stream, vegetation & wetland)	(919) 557-0929

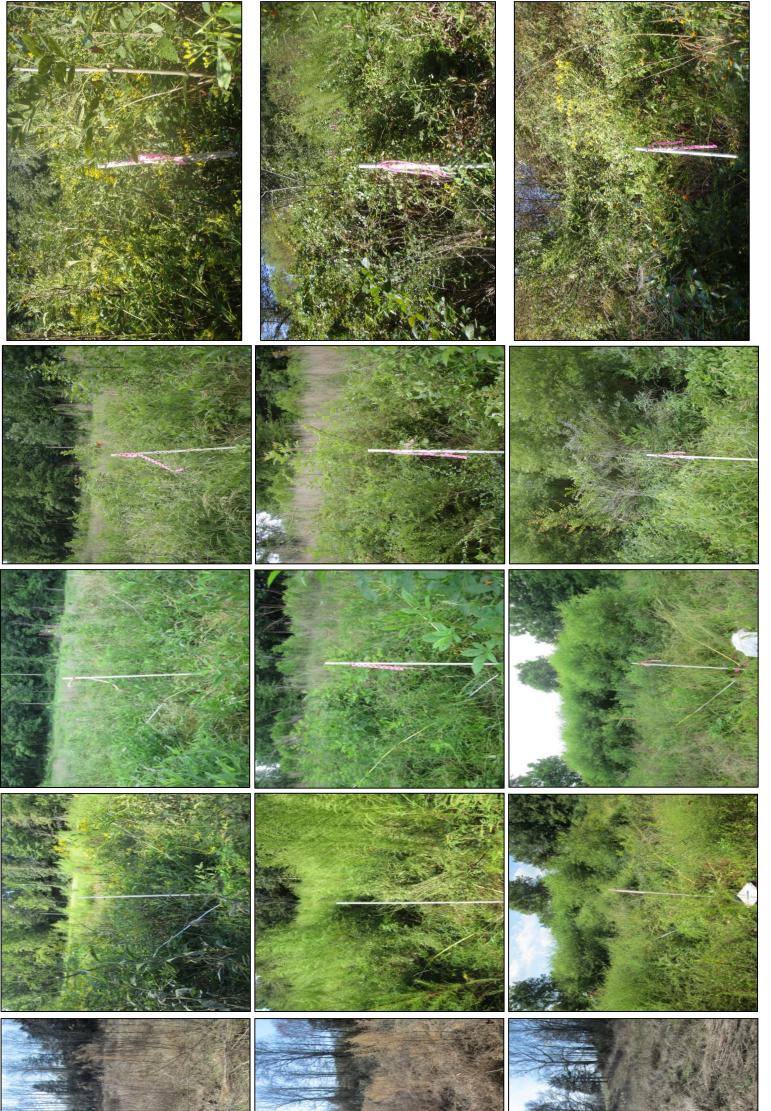

-	ne Information and Attributes am Wetland and Buffer Site / 80
	ject Information
Project Name	Charles Williams Stream Wetland and Buffer Site
County	Randolph
Project Area	18 acres
Project Coordinates (latitude and longitude)	35°49'31.95" North/ 79°39'02.64" West
	hed Summary Information
Physiographic Province	Piedmont
River Basin	Cape Fear
USGS Hydrologic Unit 8-digit 03030003	USGS Hydrologic Unit 14-digit 03030003020010
DWQ Subbasin	03-06-09
Project Drainage Area Project Drainage Area Percentage of Impervious Area	4.9 sq. mi. 5 to 6%
, , , , , , , , , , , , , , , , , , , ,	
CGIA Land Use Classification	Agricultural Land
Reach S	ummary Information
Length of Reach	1,850 linear feet
Valley Classification	Valley Type VIII
Drainage Area	4.9 sq. mi.
NCDWQ Stream ID Score	>50
NCDWQ Water Quality Classification	WS-III
Morphological Description (stream type)	C5
Evolutionary Trend	C-G-F-E-C
Underlying Mapped Soils	Chewacla loam
Drainage Classification	Poorly drained
Soil Hydric Status	Hydric B
Slope	0 to 2%
FEMA Classification	Zone AF
Native Vegetation Community	Piedmont Alluvial Forest
Percent Composition of Exotic Invasive Species	Less than 5%
	Summary Information
Size of Wetland	1.96 acres
Wetland Type	Riverine
Mapped Soil Series	Chewacla loam
Drainage Classification	Somewhat poorly drained
Soil Hydric Status	Hydric B
Source of Hydrology	Overbank flooding
Hydrologic Impairment	None
Native Vegetation Community	Piedmont Alluvial Forest
Percent Composition of Exotic Invasive Species	Less than 5%
Regulat	tory Considerations
Waters of the United States - Section 404	Resolved
Waters of the United States - Section 401	Resolved
Endangered Species Act	Resolved
Historic Preservation Act	Resolved
Coastal Zone/Area Management Acts (CZMA/CAMA)	Not Applicable
FEMA Floodplain Compliance	Resolved
Essential Fisheries Habitat	Not Applicable

APPENDIX B

Visual Assessment Data

		Table 5. Visual Stream Morphology Assessment Assessed Length: 1,850 linear feet Charles Williams Stream, Wetland, and Buffer Site /80	<mark>ו Morpho</mark> מלחד Morpho gth: 1,850 ו n, Wetland,	logy Ass inear feet and Buffer	sessmen Site / 80					
Major Channel Category	Channel Sub- Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars). Degradation - Evidence of dow n-cuting.			0 +	0 06	100 95.1			
	Riffle Condition	Texture/Substrate - Riffe maintains coarser substrate.			0	0	100			
Bed	Meander Pool	Depth - Sufficient (Max. Pool Depth : Mean Bankfull Depth ratio \ge 1.6).	4	5			80			
	Condition	Length - Appropriate (>30% of centerline distance between tail of upstrearm riffle and head of dow ns team niffle).	4	5			80			
	Thalw an Position	Thalweg centering at upstream of meander bend (run).	8	ø			100			
		Thalweg centering at downstream of meander bend (glide).	7	8			88			
	Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor grow th and/or scour and erosion.			0	0	100	none	none	n/a
Bank	Undercut	Banks undercuftoverharrging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100	none	none	n/a
	Mass Wasting	Bark stumping, calving, or collapse.			0	0	100	none	none	n/a
				Totals	0	0	94.3	n/a	n/a	n/a
	Ov erall Integrity	Structures phy sically intact with no dislodged boulders or logs.	8	8			100			
	Grade Control	Grade control structures ex hibiting maintenance of grade across the sill.	3	з			100			
Engineered Structures	Piping	Structures lacking any substantial flow underneath sills or arms.	8	∞			100			
	Bank Protection	Bank erosion within the structures' extent of influence does NOT ex ceed 15%.	8	80			100			
	Habitat	Pool forming structures maintaining - Max. Pool Depth : Mean Bankfull Depth ratio > 1.6. Rootwads/logs providing some cover at base-flow.	е	ę			100			

		-	on Condition Assessment			
Planted Acreage:	Charles W	illiams Stre	eam, Wetland, and Buffer Site / 80			
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	n/a	0	n/a	n/a
Low Stem Density Areas	Woody stem densities clearly below target levels based on MY 3, 4, or 5 stem count criteria.	0.1 acres	Not depicted - natural woody stems bring woody stems up to target levels for veg. plots where planted stem survival is low.	0	n/a	0%
			T otal	0	0	1%
Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	n/a	0	n/a	n/a
			Cumulative Total	0	0	0%
Estimated Acreage:	18 acres					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	<1,000 SF	See CCPV	2	<.1 acres	<1 %
Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	1,000 SF	See CCPV	1	0.3 acres	1%

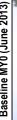


MY3 (June 2015)

MY4 (June 2016)

MY5 (September 2017)

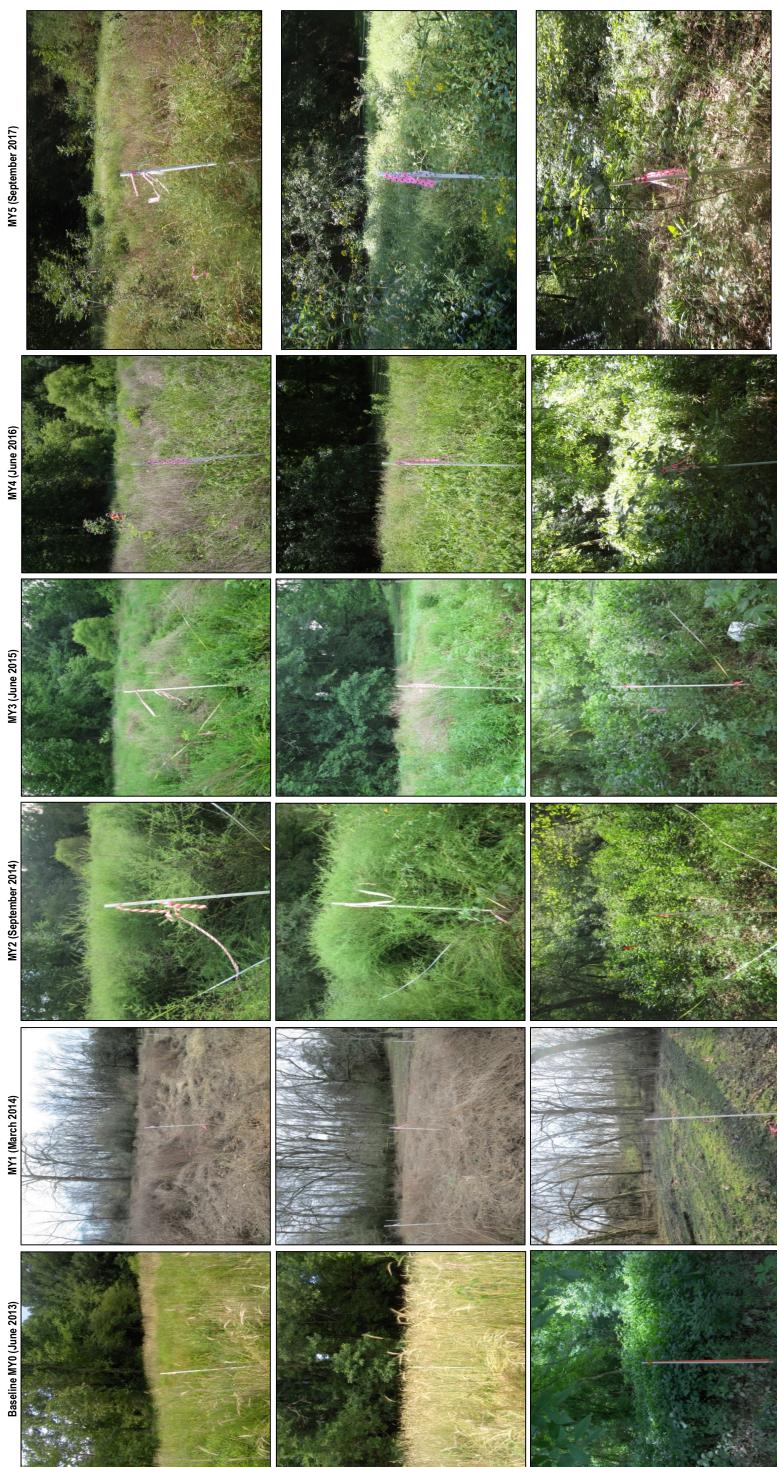
Charles Williams Stream, Wetland, and Buffer Site / 80 - Annual Photograph Comparison



Vegetation Plot 3 Facing Southwest

Vegetation Plot 1 Facing Southwest

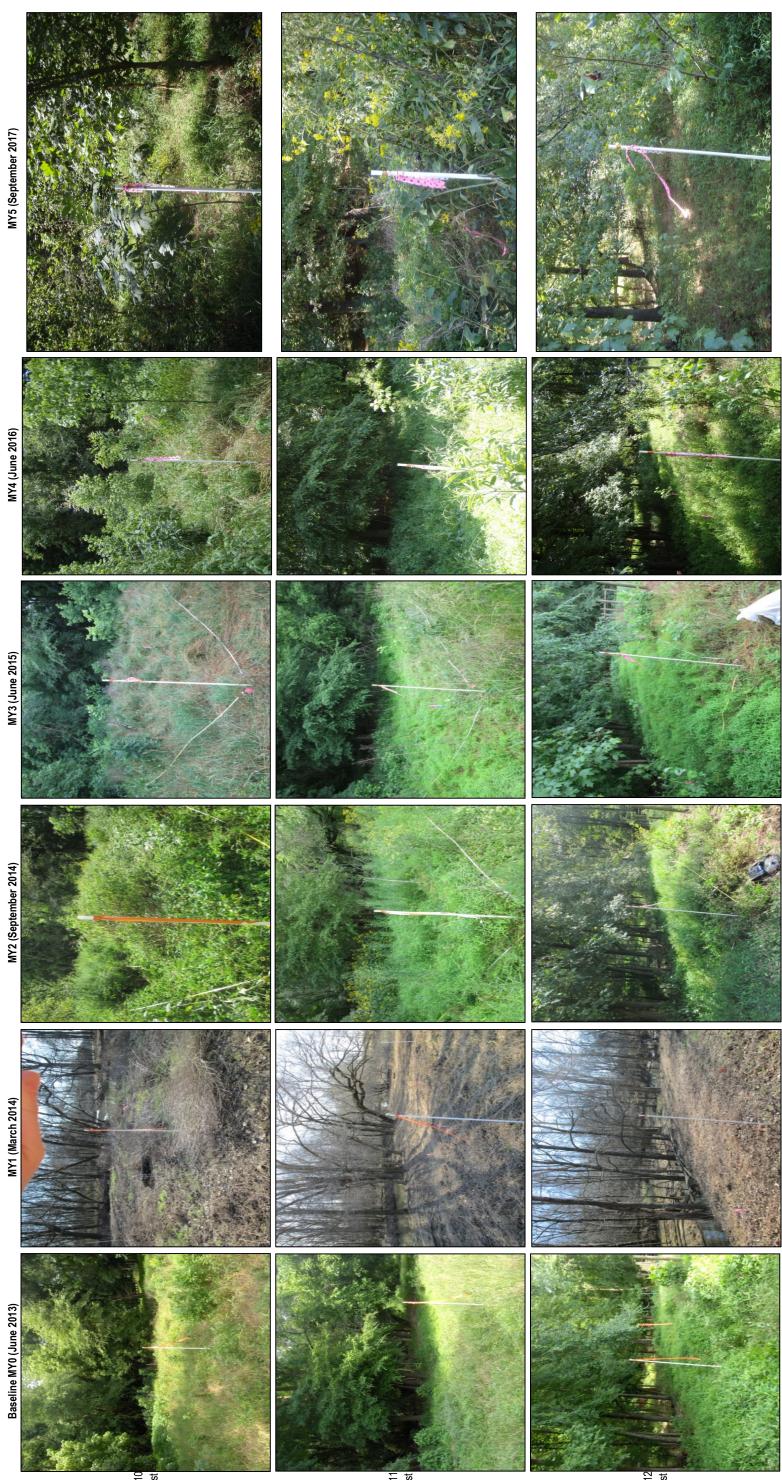
Vegetation Plot 2 Facing Southwest



Vegetation Plot 4 Facing Southwest

Vegetation Plot 5 Facing Southwest

Vegetation Plot 6 Facing Southwest



Vegetation Plot 7 Facing Southwest

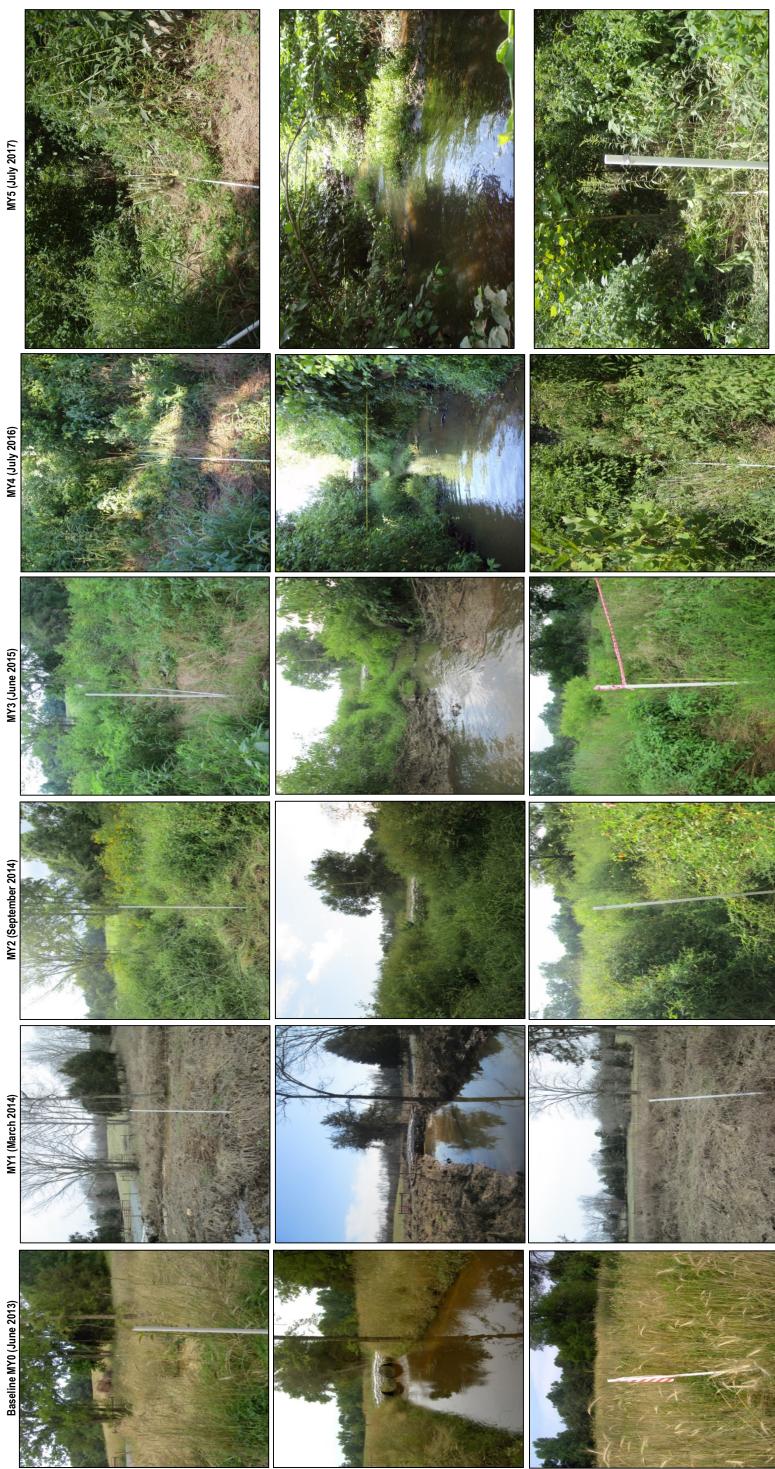
Vegetation Plot 8 Facing Southwest

Vegetation Plot 9 Facing Southwest

Vegetation Plot 12 Facing Southwest

Vegetation Plot 10 Facing Southwest

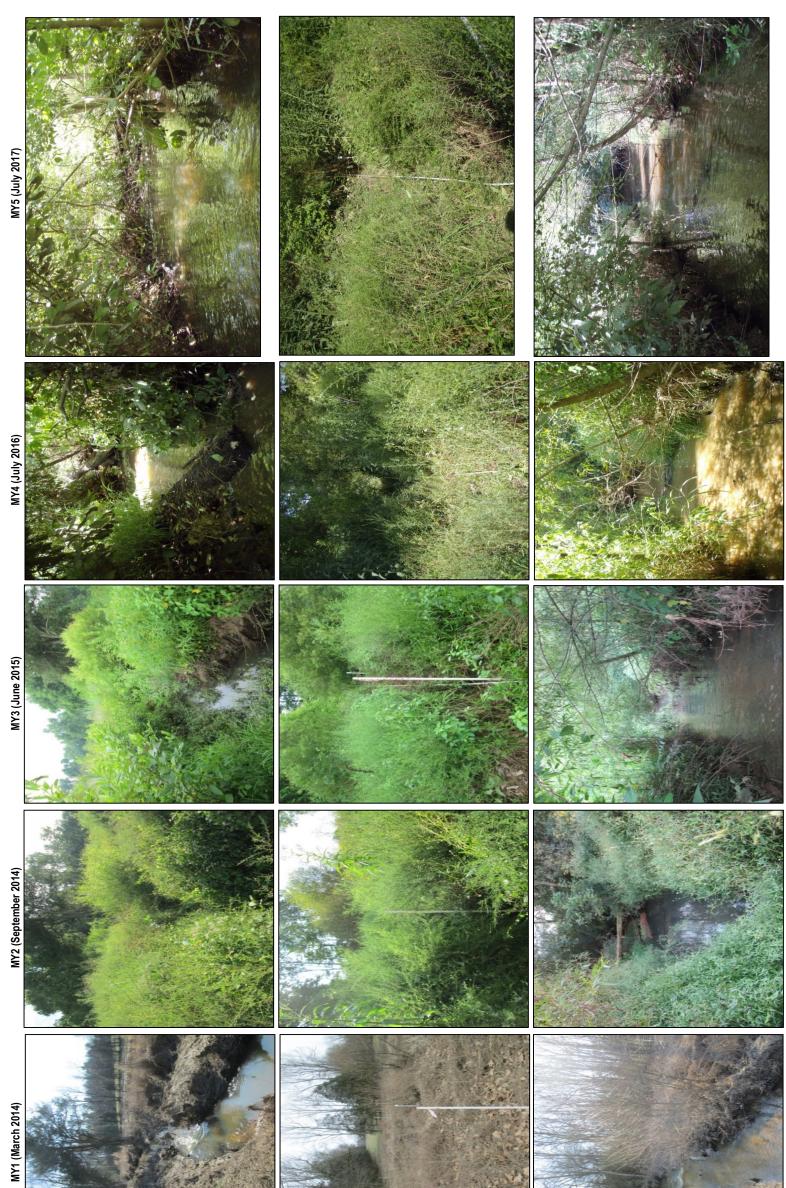
Vegetation Plot 11 Facing Southwest



Baseline MY0 (June 2013)

Cross Section 1 Facing West

NOTE: MY0-MY4 photos compressed to make room for larger MY5 photos.



Cross Section 2 Facing West

Cross Section 2 Facing Downstream

Cross Section 3 Facing West

Baseline MY0 (June 2013)

Cross Section 3 Facing Downstream

Cross Section 4 Facing West

Cross Section 4 Facing Downstream

NOTE: MY0-MY4 photos compressed to make room for larger MY5 photos.

1. Wrack at High Elevation, Documented 20 July 2017

1. Beaver Dam at Cross-section 1, Reconstsructed as of Sept. 2017, Removed Nov. 2017

Beaver Dams MY5

APPENDIX C

Vegetation Plot Data

Planted Vegetation Summary

During MY3 monitoring, new stems were documented from a supplemental planting performed by Carolina Silvics in early 2015. Stem density was observed to be adequate in 12 of the 12 vegetation plots. Please refer to the letter and tables below.

Proposed Supplemental Planting Letter

October 6, 2014

Mr. Jeff Schaffer NC Ecosystem Enhancement Program 217 West Jones Street, Suite 3000A Raleigh, North Carolina 27603

Re: D13002S

Site: Sandy Creek (Charlie Williams), EEP# 80 Randolph County, NC

Dear Mr. Schaffer:

This letter serves as our Site Maintenance Report the above referenced project site and proposes replanting activities at the site.

Messrs. William Skinner and Perry Sugg of Carolina Silvics, Inc. last visited the project site on September 9, 2014. Herbicide applications were performed at this time to control privet (*Ligustrum* spp.) and air yam (*Dioscorea bulbifera*). While on-site they observed many areas of the site where herbaceous vegetation was extremely thick and possibly outcompeting the planted stems. They also observed many dead stems and that the tops of many planted stems appeared to have died-back but were resprouting.

The Fall monitoring data and baseline monitoring data that you have provided shows approximately 65% survival at this site and correlates with what we observed on-site.

Carolina Silvics, Inc. proposes to replant the site between December 15, 2014 and March 15, 2015 with approximately 3,450 stems (an average of 300 stems per acre) from the original planting list for the site. These stems will distributed throughout the site as needed based upon the Fall monitoring report and observed conditions on site. Seedling orders are being finalized now and will be forwarded to you for approval within the next week.

Since survival percentage of stems is less than we would like, we feel that both soil amelioration and competition control measures are needed at this site. Within portions of the site where competition seems particularly heavy, we will manually cut paths several feet wide low to the ground in the existing herbaceous competition and apply Oust® XP (sulfometuron methyl) herbicide to the paths. Herbicide will not be applied to areas of standing water or areas along the channel. Stems

Office: 252-482-8491 Fax: 252-482-8491 Web: www.carolinasilvics.com

will then be replanted into these paths. Conversely, in areas where general vegetative growth is sparse, we will apply a slow release fertilizer at time of planting to improve general soil fertility in those areas.

We will notify you in advance of our replanting and maintenance activities on this site. We request that a member of your staff be onsite with us as we begin these actives so that proper distribution of the seedlings can be agreed-upon in the field by all parties.

Please know that Carolina Silvics, Inc. is committed to the success of this project and will take the measures necessary to ensure that we remain in contract compliance. If you have any questions regarding this report or our proposed replanting and maintenance activities, please contact me at (252) 482-8491 or mary-margaret@carolinasilvics.com.

Respectfully,

CAROLINA SILVICS, INC.

Monground S.M. Kinney Mary-Margaret McKinney, RF

President

Office: 252-482-8491 Fax: 252-482-8491 Web: www.carolinasilvics.com

Original Planting List from DMS

Species	Tuno	Ripa	arian	Wet	land	Nuroon
Species	Туре	Qty	%	Qty	%	Nursery
Betula nigra	2-0 BR	300	10%	100	11%	NCFS
Carya glabra	2-0 BR	100	3%			NCFS
Carya tomentosa	2-0 BR	200	7%			NCFS
Fraxinus pennsylvanica	2-0 BR	275	9%	100	11%	NCFS
Liriodendron tulipifera	2-0 BR	400	13%			NCFS
Platanus occidentalis	2-0 BR	225	7%	200	23%	NCFS
Quercus falcata var. pagodiafolia	2-0 BR	300	10%	100	11%	NCFS
Quercus nigra	2-0 BR			100	11%	NCFS
Quercus phellos	2-0 BR	600	20%	200	23%	NCFS
Quercus rubra	2-0 BR	300	10%			NCFS
Amelanchier arborea	1-gal	25	1%			Native Roots
Carpinus caroliniana	1-gal	85	3%			Native Roots
Chionanthus virginicus	1-gal	64	2%			Native Roots
Diospyros virginiana	2-0 BR	200	7%			NCFS
llex verticillata	1-gal			37	4%	Native Roots
Magnolia virginiana	1-gal			38	4%	Native Roots
		3,074	100%	875	100%	

Sandy Creek (Charles Williams)

Т	able 7. Vegetation	n Plot Criteria Att	ainment
C	harles Williams Strear	n, Wetland, and Buffe	er Site / 80
Vegetation Plot ID	Stream/Wetland Vegetation Survival Threshold Met?	Buffer Vegetation Survival Threshold Met?	Tract Mean
1	Yes	Yes	
2	Yes	Yes	
3	Yes	Yes	
4	Yes	Yes]
5	Yes	Yes	
6	No	No	Stream/Wetland Veg. = 75%
7	Yes	Yes	Buffer Veg. = 67%
8	No	No	
9	n/a	Yes	
10	n/a	Yes	1
11	n/a	No	1
12	n/a	No	

Notes:

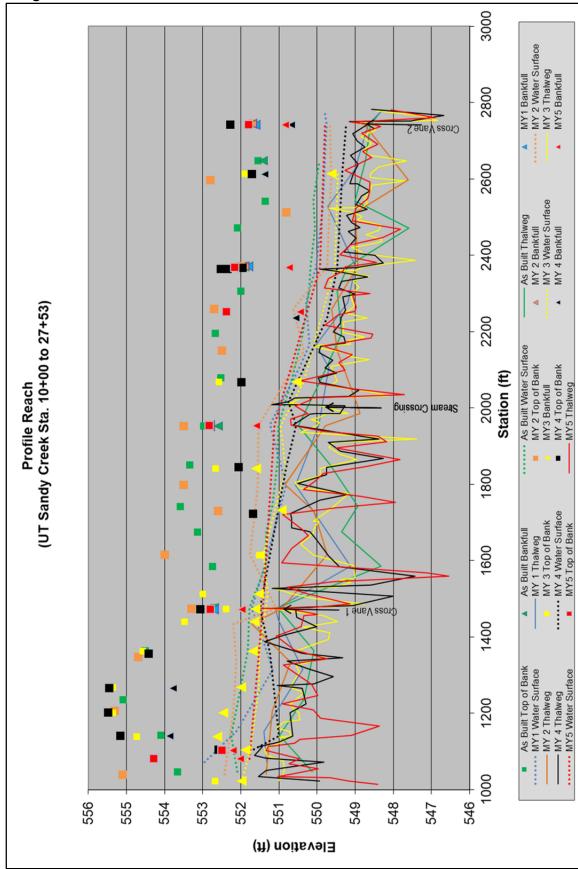
Supplemental planting at approximately 300 stems per acre was performed between December 2014 and March 2015. 230 additional stems were planted outside vegetation plots on February 6, 2017.

	. CVS Vegetation Plot Metadata
	iams Stream, Wetland, and Buffer Site / 80
Report Prepared By	David Cooper
Date Prepared	10/30/2017 15:45
database name	SandyCreekCharlesWilliams_80_RandolphCounty_Year 5.mdb
database location	P:\10000 Consultants\10227 Sungate\10227-017_Charles Williams Monitoring\MonitoringYear5
computer name	WKST6
file size	59314176
DESCRIPTION OF WORKSHEETS IN T	HIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	80
project Name	Sandy Creek - Charles Williams
Description	Stream, Wetland and Buffer
River Basin	Cape Fear
length(ft)	1,850
stream-to-edge width (ft)	5 to 12
area (sq m)	1,302
Required Plots (calculated)	12
Sampled Plots	12

Section Section <t< th=""><th>EEP Project Code 80. Project Name: Sandy Creek - Charles Williams</th><th>ect Name: Sandy Creek</th><th>- Charles Williams</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Current Plot Data (MY4 2017</th><th>Data (MY4</th><th>2017)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Anr</th><th>Annual Means</th><th>S</th></t<>	EEP Project Code 80. Project Name: Sandy Creek - Charles Williams	ect Name: Sandy Creek	- Charles Williams										Current Plot Data (MY4 2017	Data (MY4	2017)									Anr	Annual Means	S
Image Function Function <t< th=""><th></th><th></th><th></th><th>080-01-00</th><th>101</th><th>080-01-00</th><th>)02</th><th>080-01-0003</th><th>_</th><th>J-01-0004</th><th>080-01-000</th><th></th><th>30-01-0006</th><th>080-(</th><th>01-0007</th><th>080-01-0008</th><th>°</th><th>80-01-0009</th><th>080</th><th>-01-0010</th><th>080-01-00</th><th>011</th><th>080-01-001</th><th></th><th>Y4 (2017)</th><th></th></t<>				080-01-00	101	080-01-00)02	080-01-0003	_	J-01-0004	080-01-000		30-01-0006	080-(01-0007	080-01-0008	°	80-01-0009	080	-01-0010	080-01-00	011	080-01-001		Y4 (2017)	
Interested Interes	Scientific Name	Common Name				ioLS P-all	T P.	T II T	PnoLS	P-all T	PnoLS P-all T	PnoLS	P-all T	PnoLS P-	F	P-all	PnoL	P-all	PnoLS F		PnoLS P-all					
Interfactor Tree Interfactor Tree Interfactor Interfa	Acer negundo	boxelder	Tree														14		6	2		7		6		35
Interform Tree Interform Tree Interform Tree Interform Interform <td>Acer rubrum</td> <td></td> <td>Tree</td> <td></td> <td>Ч</td> <td></td> <td>Ч</td>	Acer rubrum		Tree		Ч																					Ч
Image: Image:<	Betula nigra	river birch	Tree				1		1			2		2			1							9	9	7
Interview Interview <t< td=""><td>Carpinus caroliniana</td><td></td><td>Tree</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>2</td><td>2</td></t<>	Carpinus caroliniana		Tree															1						2	2	2
Interfactor	Carya	hickory	Tree									2					1		1						ŝ	9
The field increase because in the field increase in	Celtis laevigata	sugarberry	Tree																2					1		ŝ
initial fermine initial initial </td <td>Cephalanthus occidentalis</td> <td>common buttonbush</td> <td>Shrub</td> <td></td> <td>1</td> <td></td> <td>Ч</td>	Cephalanthus occidentalis	common buttonbush	Shrub												1											Ч
Inter Inter< Inter< Inter< Inter< Inter< Inter< Inter< Inter<	Diospyros virginiana	common persimmon	Tree									1		2	2 2			3							6	6
joint joint <th< td=""><td>Fraxinus pennsylvanica</td><td>green ash</td><td>Tree</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td>68</td><td>73</td></th<>	Fraxinus pennsylvanica	green ash	Tree								2						1		2						68	73
Intervision Tree Intervision Tree Intervision Intervi	llex decidua	possumhaw	shrub																1							Ч
Indecision Tree Indecision Tree Indecision	Juglans nigra	black walnut	Tree		2				1											4						7
Interest Tree Interest Tree Interest Int	Liquidambar styraciflua	sweetgum	Tree		6		1					2												2		14
a) weekey Tee a) a) </td <td>Liriodendron tulipifera</td> <td>tuliptree</td> <td>Tree</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td>5</td> <td>5</td>	Liriodendron tulipifera	tuliptree	Tree						1									1	1					5	5	5
Indecision Tree Indecision Tree Indecision Tree Indecision <	Magnolia virginiana	sweetbay	Tree									1		1										1	1	1
alike American systemet Free 1<	Nyssa sylvatica	blackgum	Tree											1	1 1		2							3	3	3
Index Tee Index Tee Index Ind	Platanus occidentalis		Tree						1			1		1					2					5	5	5
Interlack Tree Interlack Tree Interlack Tree Interlack Tree Interlack	Quercus	oak	Tree									1		1				1	1						4	4
overcup ask Tee 1 2 2 2 1 Norwash Tee 1 <th<< td=""><td>Quercus laurifolia</td><td>laurel oak</td><td>Tree</td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>2</td><td>2</td></th<<>	Quercus laurifolia	laurel oak	Tree						2															2	2	2
ii () [] [] [] [] [] [] [] [] [] [Quercus lyrata	overcup oak	Tree								2	2					. •	1	1					10		10
willow oak Tree 1 2 2 2 2 2 1 <	Quercus michauxii		Tree				1		1			1					1		3							10
Inortherer adok Tree 1	Quercus phellos	willow oak	Tree								2				1 1			2	2					14	14	14
black willow Tree i	Quercus rubra	northern red oak	Tree						1	1 1														1	1	1
Initio Common Elderbery Number Plane Number Plane <td>Salix nigra</td> <td>black willow</td> <td>Tree</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12</td> <td>_</td> <td></td> <td></td> <td></td> <td>12</td> <td></td> <td>24</td>	Salix nigra	black willow	Tree						12	_				12												24
Sipperyelm Tree Image	Sambucus canadensis		Shrub						1																	1
Stem count 14 14 39 11 13 9 23 15 15 15 15 15 16 14 14 size (ares) 1	Ulmus rubra	slippery elm	Tree												1											Ч
size (ares) 1 <th< td=""><td></td><td></td><td>Stem count</td><td></td><td></td><td></td><td></td><td></td><td></td><td>15</td><td>12</td><td></td><td>7</td><td></td><td></td><td>7</td><td></td><td>6</td><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td>240</td></th<>			Stem count							15	12		7			7		6			5					240
size (ACRE) 0.02 <td></td> <td></td> <td>size (ares)</td> <td>1</td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td></td> <td>12</td> <td></td>			size (ares)	1		1		1		1	1		1		1	1		1		1	1		1		12	
Species count 1 1 4 6 6 7 7 7 7 7 7 8 5 5 6 6 7 6 6 7 7 3 3 3 4 3 3 4 3 3 15 15 15 7 6 6 7 6 6 7 7 3 3 15 13 3 13			size (ACRES)	0.02		0.02		0.02		0.02	0.02		0.02	C	7.02	0.02		0.02		0.02	0.02		0.02		0.30	
Stems per ACRE 566.6 566.6 1578 445.2 526.1 364.2 364.2 364.2 364.2 930.8 607 607 647.5 485.6 485.6 607 283.3 768.9 485.6 485.6 1174 283.3 283.3 788.9 485.6 1174 283.3 283.3 788.9 364.2 364.2 768.9 364.2 607 202.3 607 161.9 647.5 384.5 384.5 384.5 384.5 384.5 384.5 384.5 1174 283.3 283.3 768.9 485.6 1174 283.3 283.3 768.9 485.6 1174 283.3 283.3 768.9 485.6 1174 283.3 283.3 768.9 485.6 1174 283.3 283.3 768.9 485.6 1174 283.3 283.3 768.9 485.6 1174 283.3 283.3 768.9 485.6 1174 283.3 283.3 768.9 485.6 1174 283.3 768.9 485.6 1174 283.3 283.3 768.9 485.6 1174 283.3 283.3 768.9 364.2 768.9 364.2 768.9 364.2 768.9 445.2 768.9 445.2 768.9 767.2 768.9 768.9 767.2 768.9 767.2 768.9 767.2 768.9 767.2 768.9 767.2 768.9 767.2 768.9 767.2 768.9 767.2 768.9 767.2 768.9 767.2 768.9 767.2 768.9 767.2 768.9 767.2 768.9 767.2 768.9 768.9 768.9 767.2 768.9 768			Species count	1 1	4						7				5 7			9								25
			Stems per ACRE		1578		526.1	364.2		647	485.6		283.3	485.6		283.3 283.3		364.2	364.2			607	161.9	ъ.	384.5	09.4

Color for Density Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

APPENDIX D

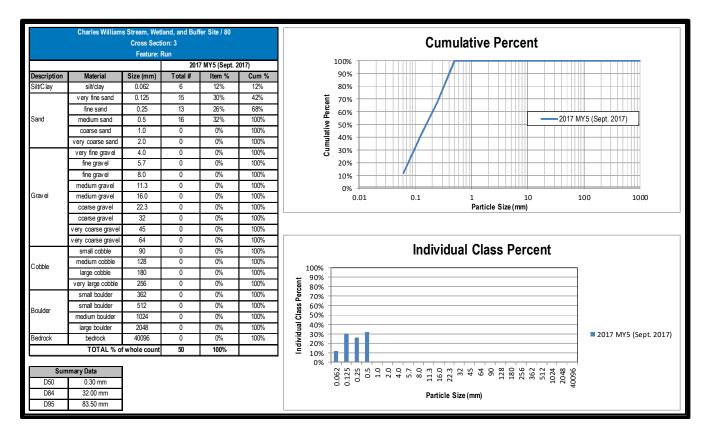

Stream Survey Data

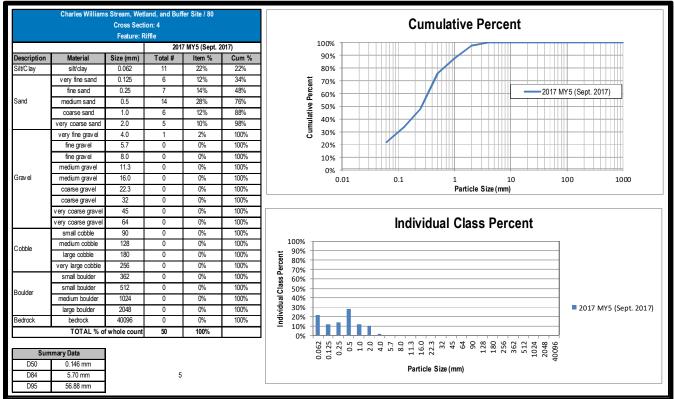
Waterehet: UT Saméy Creek, MY-05 UT Sam	Stream Type:
XS Rifle, STA. 14441 4.86 564.1971 ge Area (sq. mi): 7.1772017 4.96 555.3074 rew: 7.1772017 15.06 555.3074 rew: 0.000 553.2186 561.4284 RY DATA 20.71 551.4284 20.71 rew: 0.000 553.2186 551.7865 RY DATA 22.2 20.71 551.7865 Prome Area Elevation: 550.7477 22.755 550.7477 Prome Area Elevation: 550.7477 22.765 551.7865 Point Attais: 22.3 500+ 551.7865 553.345 Point at Bankfull: 1.3 24.8 550.7877 555.623 Point at Bankfull: 1.3 24.8 553.345 553.345 Soft at Bankfull: 1.3 23.8 553.345 553.345 Soft at Bankfull: 1.1 1.1 553.345 553.345 Soft at Bankfull: 1.1 550.7477 556 554.14162 Soft at Bankfull: 1.1 </td <td>Stream Type: C5 C5</td>	Stream Type: C5 C5
mil: 4.9 10.00 563.2186 563.2186 7/17/2017 15.06 563.2186 561.375 561.375 20.71 563.186 561.4284 20.71 561.4284 10.00 553.11 561.4284 560.7381 561.4284 10.11 37.9 560.7381 560.7381 560.7381 11.0 37.9 560.7381 560.7381 560.7381 11.0 37.9 560.7381 560.7381 560.7381 11.1 2.3 40.00 552.8333 560.7477 11.1 2.3 56.9 560.7477 563.365 11.1 2.3 56.0 562.623 563.365 11.1 2.3 56.9 553.345 563.365 553.345 11.1 2.3 56.9 553.345 563.365 553.345 553.345 553.345 553.345 553.345 553.345 553.345 553.345 553.345 553.345 553.345 553.345 554.415 553.345 5	Stream Type:
7/17/2017 7/17/2017 15.06 552.8074 D. Cooper, W. Turner D. Cooper, W. Turner 551.375 551.375 Si3.1 22.75 550.3855 si3.1 22.75 550.7381 si3.1 22.75 550.7381 si3.1 22.75 550.7381 si3.1 22.75 550.7381 si3.1 22.85.6 551.7956 si3.1 22.95 550.7477 si3.1 22.95 550.7381 si3.1 23.86 552.082 si4.8 552.8933 44.94 si3.1 23.45 55.09 si3.1 23.45 55.3365 si3.1 23.45 55.365 si3.1 23.45 55.365 si3.1 23.45 55.365 si3.1 55.3.1724 55.3.1724 si3.1 55.3.1724 55.3	Stream Type:
D. Cooper, W. Turner 19.86 551.975 20.71 551.4284 20.71 551.4284 20.71 551.4284 20.71 551.4284 20.71 551.4284 20.71 551.4284 20.71 551.4284 20.71 551.4284 20.71 550.6955 553.49 550.7381 20.6 552.082 553.44 552.693 44.94 553.345 553.345 55.09 553.345 55.09 553.345 55.08 553.345 55.09 553.345 55.3355 553.345 55.3355 553.345 55.3355 553.345 55.3355 55.345 55.3355 55.345 55.3355 55.345 55.345 55.346 55.345 55.346 55.345 55.346 55.345 55.346 55.345 55.346 55.345 55.346 55.346 55.347 55.346 55.346 55.346 55.347 55.346 55.347 55.346 55.347 55.346	Stream Type: C5
20.71 551.4284 20.71 551.4284 20.71 551.4284 20.71 550.8952 20.74 550.7381 20.73 550.7381 20.74 550.7381 20.74 550.7381 20.74 550.7381 20.74 550.7381 20.74 550.7381 10 20.74 552.623 552.623 552.623 552.623 552.623 552.623 552.623 552.623 552.623 552.623 552.623 553.652 553.652 554.4152 554.4152 554.4152 554.4152 554.4152 554.4152 554.4152 554.4152 554.4152	

														Stream Type: C5 Photograph facing downstream @ XS 2									Ac-Built 2012		4T/07/7 T1W		MY 3 6/30/2015		MV5 7/18 /2017		····· Floodprone Area
Elevation	552.9845	553.1658	553.268	552.9523	552.826	552.3701	551.595	551.152	550.8106	550.737	550.6752	551.1232	551.5737	551.2513	551.085	551.2178	551.805	552.9664	553.1516	553.1988	552.9529					•				 6	
Station	00:00	4.69	9.93	14.83	18.78	19.66	20.43	21.11	23.33	24.83	26.84	29.06	31.01	32.84	34.41	37.01	37.98	40.26	45.06	49.89	56.37					•			8	- UV	
Cape Fear		XS 2, Glide, STA. 19+36	4.9	7/18/2017	D. Cooper, W. Turner			552.9	33.9	23.7	555.2	200+	22	1.6	14.8	\$	1.0					n 2, Run, Station: 19+36								30	
River Basin:	Watershed: UT	XS ID: XS	Drainage Area (sq mi):	Date:	Field Crew: D		SUMMARY DATA	Bankfull Elevation:	Bankfull Cross Sectional Area:	Bankfull Width:	Flood Prone Area Elevation:	Flood Prone Width:	Max. Depth at Bankfull:	Mean Depth at Bankfull:	Width/Depth Ratio:	Entrenchment Ratio:	Bank Height Ratio:					UT to Sandy Creek, Cross Section 2, Run, Station: 19+36		228	556	() U	00 0	E6	550	548 + 10	

u): ional Area:	UT Sandy Creek, MY-05 XS 3, Run, STA. 23+49 4.9 7/19/2017	0 4 720770882	551.7725 552.1223		
ge Area (sq mi): rew: rew: ARY DATA ARY DATA I Elevation: II Cross Sectional Area: II Width: Prone Area Elevation:	un, STA. 23+49 4.9 //19/2017	A 720770882	552.1223		
age Area (sq mi): Crew: Crew: MARY DATA MARY DATA UIL Elevation: UIL Cross Sectional Area: UIL Width: UIL Width: Drone Area Elevation:	4.9	+.2001 20000		A CONTRACTOR OF A CONTRACTOR O	のようとしたり、しくしたい
Crew: ARY DATA ull Elevation: ull Cross Sectional Area: ull Width: Prone Area Elevation:	7/19/2017	9.645943505	552.2497		
		14.61741637	551.2408		
SUMMARY DATA Sankfull Elevation: Bankfull Cross Sectional Area: Bankfull Width: Flood Prone Area Elevation:	D. Cooper, W. Turner	17.05300209	552.1632		and the second sec
SUMMARY DATA Bankfull Elevation: Bankfull Cross Sectional Area: Bankfull Width: Flood Prone Area Elevation:		19.07109574	550.7354		くうく シントー いはつうかん
3ankfull Elevation: 3ankfull Cross Sectional Area: 3ankfull Width: Flood Prone Area Elevation:		22.0884401	549.1664		
3ankfull Cross Sectional Area: 3ankfull Width: Flood Prone Area Elevation:	551.9	24.16159682	549.2658		
3ankfull Width: -lood Prone Area Elevation:	32.5	26.59611879	549.8048	1	
lood Prone Area Elevation:	23.0	28.64100973	549.925		
CITE ALD DEPENDENT OF A DEPENDENT OF	554.9	30.30366943	550.9368	の一般の	
FIOOD Prone Wigun:	500+	35.01461868	550.9999		
Max. Depth at Bankfull:	27	37.94015505	551.1396	C	
Mean Depth at Bankfull:	1.5	41.7506089	552.3007	Stream Type: C5	5 Photograph facing downstream @ XS 3
Width/Depth Ratio:	15	45.24282843	552.6832		
Entrenchment Ratio:	%	49.69386169	552.5833		
Bank Height Ratio:	11	55.53082435	552.3413		
		56.34787958	552.3913		
	1				
UT to Sandy Creek, Cross Section 3, Gilde, St	Glide, Station: 23+49				
560					
00 00 00					As-Built 2013
				•	MY1 2/26/14
				•	MY 2 9/16/14
554				•	MV 3 6/30/2015
225 19643					
				•	MY4 7/20/2016
550					MY5 7/20/2017
548					Baseline Bankfull Monitoring Datum
0 10 20	30	40 5	50 60	70	····· Floodprone Area
	Distance (feet)	(1			

River Basin:	Cape Fear	Station	Elevation	
Watershed:	UT Sandy Creek, MY-05	0	551.2606	「「「「「「」」」」
XS ID:	XS 4, Riffle, STA. 27+14	4.853175575	551.3409	
Drainage Area (sq mi):	4.9	9.838043125	551.1986	
Date:	7/20/2017	14.83361596	551.6089	
Field Crew:	D. Cooper, W. Tumer	19.76775178	552.0037	
		23.4905335	551.8007	
SUMMARY DATA		25.9935143	550.8302	
Bankfull Elevation:	551.7	26.6445454	549.7921	
Bankfull Cross Sectional Area:	39.7	28.01703875	548.6039	
Bankfull Width:	25.1	30.85993943	548.4841	
Flood Prone Area Elevation:	554.8	32.96710071	548.7443	
Flood Prone Width:	200+	37.34162311	550.4648	The set is a set of the set of th
Max. Depth at Bankfull:	3.2	41.01200486	550.3933	
Mean Depth at Bankfull:	1.7	50.16389719	551.9199	Stream Type: C5 Photograph facing downstream @ XS 4
Width/Depth Ratio:	14.7	57.65749503	552.46	
Entrenchment Ratio:	>8.0	62.35559607	552.0746	
Bank Height Ratio:	1.0	65.82654674	552.1523	
UT to Sandy Creek, Cross	UT to Sandy Creek, Cross Section 4, Riffle, Station: 27+14	4		
560		_		
· (
208				
et) 556				
(fe 554	•			MY 2 9/16/14
552 552				MY 3 6/30/2015
550				
053				MV5 7/20/2017
0 10	20 30	0	50 60	70 ••••• Floodprone Area
	Distance (feet)	(feet)		




Longitudinal Profile Plot Exhibit

Cross Section Pebble Count Exhibits

	Charles William	s Stream, Wet Cross Sect Feature: F	ion: 1	fer Site / 80							(Cum	nula	tive	Per	cent					
		reature: r		7 MY 5 (Sept. 3	2017)			100% —													.
Description	Material	Size (mm)	Z01 Total #	Item %	Cum %			90% -													
Silt/Clav	silt/clav	0.062	14	28%	28%			80%													
Oneonay	very fine sand	0.125	7	14%	42%		ŧ														
	fine sand	0.25	9	18%	60%		Darcant	7070									20	17 MY 5	(Sept. 2	017)	1 I
Sand	medium sand	0.5	5	10%	70%		G	60%				/					20	17 1011 3	(00pt. 2		1 1
	coarse sand	1.0	1	2%	72%		Cumulative	50% +													
	very coarse sand	2.0	3	6%	78%		1	40% +	_												1
	very fine gravel	4.0	1	2%	80%		đ	30% +		/											-
	fine grav el	5.7	0	0%	80%			20% +		_			_								-
	fine grav el	8.0	0	0%	80%			10% +													-
	medium gravel	11.3	0	0%	80%			0%			Щ										
Gravel	medium gravel	16.0	1	2%	82%			0.0	1		0.1			1		10		100)	1	000
	coarse gravel	22.3	1	2%	84%									Particle	e Size (mm)					
	coarse gravel	32	0	0%	84%																
	very coarse gravel	45	2	4%	88%																
	very coarse gravel	64	3	6%	94%										_						
	small cobble	90	2	4%	98%						Ind	IVID	ual	Clas	ss P	erce	nt				
Cobble	medium cobble	128	1	2%	100%		100%														
0 00010	large cobble	180	0	0%	100%		0.00/											_			
	very large cobble	256	0	0%	100%	Cen l	80%											_			
	small boulder	362	0	0%	100%	Per	70%											_			
Boulder	small boulder	512	0	0%	100%	SSE	60%											_			
	medium boulder	1024	0	0%	100%	Individual Class Percent	50%														
	large boulder	2048	0	0%	100%	dua	40% 30%												2017		Sept. 2017)
Bedrock	bedrock	40096	0	0%	100%	l is	20%											- '	20171	VIT 5 (3	Sept. 2017)
	TOTAL % o	f whole count	50	100%		<u> </u>	10%	╎┠╺╻┠										_			
Sum	nmary Data	1					0%	N N N	ni oi o	o o r	. 0, "	i o u	1 2 1	0 4 0	8 O	950	1 2 20	9			
D50	0.34 mm							0.062 0.125 0.25	0 1 0	N 4 N	, « t	16	, [.] .	4 00 01	18	256 362 512	10 ²	500			
D84	45.00 mm							5.5				article						4			
D95	109.00 mm										F	anne	5120 ()							

	Charles William	s Stream, Wet Cross Sect		fer Site / 80							C	um	ula	live	P۵	rcent	ŀ						
		Feature: 0									U	un	uid		1.6								
				7 MY 5 (Sept. 2	2017)			100%]					11111									П	
Description	Material	Size (mm)	Total #	Item %	Cum %			90% -											-			+	
Silt/C lay	silt/clay	0.062	8	16%	16%			80% -							_		_					+	
	very fine sand	0.125	6	12%	28%		Ţ	70% -														4	
	fine sand	0.25	8	16%	44%		erce	60% -										2017 M	Y 5 (S	ept. 20)17)	7	
Sand	medium sand	0.5	9	18%	62%		Cumulative Percent	50% -					1						Ù	Ċ	ЦÚП		
	coarse sand	1.0	9	18%	80%		ativ	30%															
	very coarse sand	2.0	6	12%	92%		Ta la	40% -														1	
	very fine gravel	4.0	2	4%	96%		5	30% -														1	
	fine grav el	5.7	2	4%	100%			20%					+++++							+ +-		ť	
	fine grav el	8.0	0	0%	100%			10% -													_	+	
	medium gravel	11.3	0	0%	100%			0%											-			4	
Gravel	medium gravel	16.0	0	0%	100%			0.0	01		0.1			1		10		1	.00		1	000	
	coarse gravel	22.3	0	0%	100%									Particl	e Size	e (mm)							
	coarse gravel	32	0	0%	100%																		
	very coarse gravel	45	0	0%	100%																		
	very coarse gravel	64	0	0%	100%						1			<u></u>		.							
	small cobble	90	0	0%	100%						Indi	via	uai	Clas	SS I	Perce	ent						
Cobble	medium cobble	128	0	0%	100%		100% ¬																
	large cobble	180	0	0%	100%		90% -																
	very large cobble	256	0	0%	100%	Percent	80% -																
	small boulder	362	0	0%	100%	Per	70% -											_					
Boulder	small boulder	512	0	0%	100%	ass	60% -																
	medium boulder	1024	0	0%	100%		50% - 40% -																
Dashaali	large boulder	2048	0	0%	100%	idue	30% -												2	017 N	/Y 5 (Sept. 2	2017)
Bedrock	bedrock	40096	0	0%	100%	Individual Class	20%												-				,
L	TOTAL % of	whole count	50	100%		-	10% - 0% -			1,													
	nmary Data						0,0	0.062 0.125 0.25	0.5	2.0	8.0 8.0	L6.0	32	64 90	128	256 362	512 024	048 096					
D50	0.20 mm							o o 0										40 2					
D84	6.28 mm										Pa	rticle	Size (r	nm)									
D95	11.20 mm																						

NameAnd the state of the state							Charle	e Williame	Table 1	0a. Bast	eline Stru Buffer Sit	eam Dat: 'e / 80 - IIT	Table 10a. Baseline Stream Data Summary	ary Treek: 1.8.	50 linear f	oot.									
Antional field Antiona	And C	Parameter	Gauge ²	Region	al Curve			Pre-E	visting Condit	ion		0-00-01		eference Re	ach(es) Data	201			Desian			Mo	nitoring Base	ine	
Internet (Interne	Instruction I <thi< th=""> I <thi< th=""><th></th><th>o Gano</th><th>·</th><th></th><th></th><th></th><th>ŀ</th><th>,</th><th></th><th></th><th></th><th></th><th></th><th></th><th>ĺ</th><th></th><th></th><th>,</th><th>-</th><th></th><th></th><th>, .</th><th></th><th></th></thi<></thi<>		o Gano	·				ŀ	,							ĺ			,	-			, .		
(a) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(a) (a) (b) (b) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Dimension and Substrate - Riffle Only			٦							Min	Mean	Med	Max	SD^5	c	Min	Med						c
Nurschold (Nurschold (Subschold	Warenery (warenery (warenery) I <thi< td=""><td></td><td></td><td></td><td></td><td></td><td>.7</td><td>5.2</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25.2</td><td></td><td></td><td></td><td></td><td>6</td><td>2</td></thi<>						.7	5.2			1								25.2					6	2
matrix matrix<	International biology (and the constructional biology (and the constructional biology) (and the constructiona	Floodprone Width (ft)					٨	300			-								>300					+	2
Walking manufactor (walking manufactor (walking manufactor (walking manufactor (walking	image: static constrained with the staticonstrained with the static constrained with the st	Bankfull Mean Depth (ft)					,=	.58			-								1.59						2
Inductionality (solution by any originality (solution by any originality (soluti	Interfactor	¹ Bankfull Max Depth (ft)						2.6			٢								2.6						2
which w	Unitational functional functiona	Bankfull Cross Sectional Area $({ m ft}^2)$					7	0.0			1								40					1	2
(randicultuality) (randicutuality) (randicu		Width/Depth Ratio						5.8			-								15.8	~				10	2
Image: constraint of the	functional band band band band band band band band	Entrenchment Ratio						15			-								>15						2
Markation Markation <t< th=""><th>All of the field of t</th><th>¹Bank Height Ratio</th><th></th><th></th><th></th><th></th><th></th><th>1.0</th><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1.0</th><th></th><th></th><th></th><th></th><th></th><th>2</th></t<>	All of the field of t	¹ Bank Height Ratio						1.0			1								1.0						2
stant stant <th< th=""><th>Induction Induction <t< th=""><th>Profile</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th></t<></th></th<>	Induction Induction <t< th=""><th>Profile</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th></t<>	Profile																							-
manual matrix matrix<	manual manu manu manu	Riffle Length (ft)					╞	-														-	-		2
Image: field of the set of the s	Mathematical field Image Image <td>Riffle Slope (ft/ft)</td> <td></td> <td></td> <td></td> <td></td> <td>Ö</td> <td>013</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.013</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td>	Riffle Slope (ft/ft)					Ö	013			-								0.013						2
NameNa	while i <td>Pool Length (ft)</td> <td></td> <td></td> <td></td> <td>8</td> <td></td> <td>0.5</td> <td>63.7</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>30.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td>	Pool Length (ft)				8		0.5	63.7	 									30.5						4
Operation Operation <t< td=""><td>Contraction Contraction Contraction</td><td>Pool Max depth (ft)</td><td></td><td></td><td></td><td></td><td></td><td>3.4</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.4</td><td></td><td></td><td></td><td></td><td>2</td><td>4</td></t<>	Contraction	Pool Max depth (ft)						3.4			1								3.4					2	4
virtuality virtual	Interfacional methods	Pool Spacing (ft)				5		16.0	94.0										116.4						°,
Considentify Encode	month i j <td>Pattern</td> <td></td>	Pattern																							
flat d(mained) i	outo i	Channel Beltwidth (ft)				3,	-	4.9	62.3									31.7	44.9	⊢	┝	-	-		4
Redudantific I <t< td=""><td>ombin c<td>Radius of Curvature (ft)</td><td></td><td></td><td></td><td>11</td><td></td><td>7.8</td><td>95.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>15</td><td>37.8</td><td></td><td></td><td></td><td></td><td></td><td>4</td></td></t<>	ombin c <td>Radius of Curvature (ft)</td> <td></td> <td></td> <td></td> <td>11</td> <td></td> <td>7.8</td> <td>95.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15</td> <td>37.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td>	Radius of Curvature (ft)				11		7.8	95.0									15	37.8						4
Mondo Wonkenging Constrained	ending i <td>Rc:Bankfull width (ft/ft)</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>1.5</td> <td>3.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9.0</td> <td>1.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td>	Rc:Bankfull width (ft/ft)				0		1.5	3.8									9.0	1.5						4
Mononventing Image: Market with Figure Market	Initial condition Initian Initial condition Ini	Meander Wavelength (ft)				7:		33.8	216.0									73	133.8						4
Rench Stave Strass (completicul) b ¹ 	Interface Interface <t< th=""><th>Meander Width Ratio</th><th></th><th></th><th></th><th>2</th><th>_</th><th>5.3</th><th>8.6</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1.3</th><th>1.8</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>4</th></t<>	Meander Width Ratio				2	_	5.3	8.6									1.3	1.8	_	_	_	_	_	4
Rand Stare Struct Grouperuy Info Lagent Stare Struct Grouperuy Info O 0.4425 O	month 043 043 043 1 18 month 20 20 20 20 20 18 month 31 month 20 20 20 20 20 18 month 1 20 20 20 20 20 20 18 month 20 20 20 20 20 20 20 18 month 20																			_					
React Stars (complexe) Inf ⁻ 0 143 0 143 0 143 React Stars (complexe) Inf ⁻ 0 120 0 114 1000 React Total Start Information of the Inform	mon bit	Transport parameters																		-					
as part sed (mm) moliticed at banklue Eag (mm) moliticed at banklue CD CD <thc< th=""><th>at banklit E1 20 20 20 20 bij Vin² Image (s) Image (s)<th>Reach Shear Stress (competency) lb/f²</th><th></th><th></th><th></th><th></th><th></th><th></th><th>0.1425</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>0.07</th><th></th><th></th></th></thc<>	at banklit E1 20 20 20 20 bij Vin ² Image (s) Image (s) <th>Reach Shear Stress (competency) lb/f²</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.1425</th> <th></th> <th>0.07</th> <th></th> <th></th>	Reach Shear Stress (competency) lb/f ²							0.1425														0.07		
and Power (transpot capacity) wind Region (task relation Bankui Vectory (tis) Image: Constraint of the constraint o	bylylm ² bylylm ² bylylm ² bylylm ² bylylm ² stefation stefation c c c stefation c c c c stefation c c c c c stefation c c c c c c stefation c c <t< th=""><th>Max part size (mm) mobilized at bankfull</th><th></th><th></th><th></th><th></th><th></th><th></th><th>2.0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>2.0</th><th></th><th></th></t<>	Max part size (mm) mobilized at bankfull							2.0														2.0		
Roger Clastification CG CG Brinkli Valory (rsb) 53 55 Brinkli Valory (rsb) 33 53 53 Brinkli Valory (rsb) 33 53 53 Brinkli Valory (rsb) 150 33 53 Valory and (rsb) 150 315 53 Uster Valory and (rsb) 150 315 53 Uster Valory and (rsb) 160 160 166 Valory and (rsb) 160 166 166 Valory and rsb (rsb) 106 166 166 Valory and rsb (rsb) 00014 166 166 Valory and rsb (rsb) 00014 166 00014 Valory and rsb (rsb) 00014 00014 00014 Valory and rsb (rsb) 00014 00014 00014 00014 000	staticule CS CS CS locity (ts) 33 35 375 locity (ts) 33 375 375 lerge (si) 1500 375 375 lerge (si) 1561 156 166 nois (si) 1561 156 166 nois (si) 156 166 166 nois (si) 166 166 166 nois (si) 166 166 166 nois (si) 166 166 nois (si) 166 166 nois (si) 0003 1003 nois	Stream Power (transport capacity) W/m ²																							
$ \begin{array}{ c c c c } \hline C \\ \hline \hline C \\ \hline C \\ \hline C \\ \hline \hline C \\ \hline \hline C \\ \hline C \\ \hline \hline \hline C \\ \hline \hline C \\ \hline \hline \hline C \\ \hline \hline \hline \hline$	satisfield c C <thc< th=""> C <thc< th=""><th>Additional Reach Parameters</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thc<></thc<>	Additional Reach Parameters																							
$ \begin{array}{ c c c c c } \hline 3 & $	obsolv (yeb) 3 33 harge (xb) 1 130 3.5 harge (xb) 1 130 130 harge (xb) 1 130 130 harge (xb) 1 130 130 harge (xb) 130 130 130	Rosgen Classification							C5										C5				C5		
150 160 161 161 161 161 161 161 162 106 106 106 107 106 108 0004 100 0004 100 0004 100 0004 100 0004 100 0004 100 0004 100 0004 100 0004 100 0004 100 0004 100 0004 100 0004	Rege (ds) Total	Bankfull Velocity (fps)							3.9										3.75				3.05		
161 160 180 180 180 180 191 100 105 106 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 1000 101 100 101 100 101 100 101 1000 101 1000 101 1000 101 1000 101 1000 101 1000 101 1000 101 1000 101 1000 101 1000 101 1000 101 1000 101 1000 101 1000 101 </th <th>Inegrit (i) 1961</th> <th>Bankfull Discharge (cfs)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>150.0</th> <th></th>	Inegrit (i) 1961	Bankfull Discharge (cfs)							150.0																
180 180 105 106 106 106 107 0014 011 00014 011 0013 011 0014 011 0013 011 0014 011 0013 011 0014 011 0013 011 0014 011 0013 011 0014 011 0013 011 0014 011 0013 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011<	length (t) 180 180 180 nous(y) nous(y) 10 10 10 nous(y) 10 10 10 10 sole (h) 10	Valley length (ft)							1961																
1.06 1.06 0.014 0.014 0.014 0.014 0.01	nuosit (i) 1.06 1.06 1.06 nuo (ift) 1.06 1.06 1.06 nuo (ift) 1.06 0.014 0.014 size (ift) 1.06 0.0014 0.0014 size (ift) 1.06 0.0014 0.0014 size (ift) 1.06 1.06 0.0014 size (ift) 1.06 0.0014 0.0014 size (ift) 1.06 1.06 0.0013 size (ift) 1.06 0.0014 0.0013 size (ift) 1.06 1.06 1.06 size (ift) 1.06 <th>Channel Thalweg length (ft)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1850</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1850</th> <th></th> <th></th> <th></th> <th>1850</th> <th></th> <th></th>	Channel Thalweg length (ft)							1850										1850				1850		
004 004 01 001 01 001 01 001 01 001 01 001 01 001 01 001 01 001 01 001 01 01 <td>neb (t)(t) 0.004 0.004 0.004 sb(t)(t) b 0.004 b 0.004 b sb(t)(t) b</td> <td>Sinuosity (ft)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.06</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.06</td> <td></td> <td></td> <td></td> <td>1.06</td> <td></td> <td></td>	neb (t)(t) 0.004 0.004 0.004 sb(t)(t) b 0.004 b 0.004 b sb(t)(t) b	Sinuosity (ft)							1.06										1.06				1.06		
	slope (H) 0.003 real (arces) media real (arces) media real (arces) media ring Banks media ring Lother media ring Lother media	Water Surface Slope (Channel) (ft/ft)							0.0014										0.0014				0.0013		
³ Barklil Flodplain Area (acres) Barklil Flodplain Area (acres) Bell	³ Bankfull Floodpian Area (acres) Benkfull Floodpian Area (acres) Benkfull Floodpian Area (acres) Benkfull Floodpian Area (acres) ⁴ % of Reach with Eroding Banks ⁴ % of Reach with Eroding Banks Exote (acres) Exote (acres) ⁴ % of Reach with Eroding Banks Exote (acres) Exote (acres) Exote (acres) Exote (acres) ⁴ % of Reach with Eroding Banks Exote (acres) Exote (acres) Exote (acres) Exote (acres) ⁴ % of Reach with Eroding Banks Exote (acres) Exote (acres) Exote (acres) Exote (acres) ⁴ % of Reach with Eroding Banks Exote (acres) Exote (acres) Exote (acres) Exote (acres) Exote (acres) ⁴ % of Reach with Professories Exote (acres) Exote (acres) Exote (acres) Exote (acres) Exote (acres) ⁴ % of Reach with Professories Exote (acres) Exote (acres) Exote (acres) Exote (acres) Exote (acres) ⁴ % of Reach with Professories Exote (acres) Exote (acres) Exote (acres) Exote (acres) Exote (acres) ⁴ % of Reach with Professories Exote (acres) Exote (acres) Exote (acres) Exote (acres) Exote (acres) ⁴ % of Reach with Professo	BF slope (ft/ft)																	0.0013				0.0013		
⁴ % of Reach with Eroding Banks End e	⁴ % of Reach with Eroding Banks Method Banks <th< td=""><td>³Bankfull Floodplain Area (acres)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	³ Bankfull Floodplain Area (acres)																							
Channel Stability or Habitat Metric Element of the field of the fi	Channel Stability or Habitat Metric Channel Stability or Habitat Metric Biological or Other Biological or Other Shaded cells indicate that these will typically not be filled in.	⁴ % of Reach with Eroding Banks																							
Biological or Other	Biological or Other Biological or Other Shaded cells indicate that these will traically not be filled in.	Channel Stability or Habitat Metric																							
	Shaded cells indicate that these will tripically not be filled in.	Biological or Other																							

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare). 3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the tore of the terrace riser/slope. 4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data. 5. Of value/needed only if the n exceeds 3

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic (Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek:	b. Bat	seline	Strea l Ch	m Data ıarles W	a Sum 'illiams	mary Stream	(Subs , Wetlan	strate, Id, and I	Bed, Buffer S	Bank, ite / 80	eam Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek: 1,850 linear feet	ydrolo sandy Cr	gic Co reek: 1,6	150 linea	nent P	arame	Containment Parameter Distributions) 1,850 linear feet	tributi	(suc						
		Ā	e-Exis	Pre-Existing Condition	ndition				Refe	rence	Reference Reach(es) Data	s) Data					Design	s.				As-built/Baseline	t/Base	ine	
P% / G% / S% 1%	1%	84% 4%	4%	11%	%0															11% 60%	30% 1	14%	15%	%0	
%/ B%/ Be% 7%	7%	83% 10%		%0	%0	%0																			
di ^p / di ^{sp} (mm) 0.12 0.34 0.55 1.70 3.60 <2.0 <2.0	0.12	0.34	0.55	1.70	3.60	<2.0	<2.0																		
/ 5.0-9.9 / >10 0	0	0	0	0 1850	1850															0	0	200	0	1650	
1.5-1.99/>2.0 1850 0 0	1850	0	0	0																1850	0	0	0		

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates 3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile 1 = Riffle, Run, Pool, Glide, Step; Sitt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

Parameter

¹Ri% / Ru% / P% / G%

¹SC% / Sa% / G% / C% / B% /

¹SC% I Sa% I G% I C% I B% I B ¹d16 I d35 I d50 I d84 I d95 I di^p I di^{sp} (m

²Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 /

³Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 /

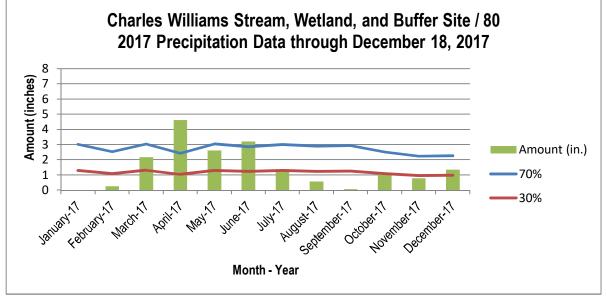
Shaded cells indicate that these will typically not be filled in.

		Та	Table 11a. Monitoring Data - Dimensional Morphology Summary (Dimensional Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek: 4	Monit	oring [Charles	oring Data - Dimensional Morphology Summary (Dimensional Charles Williams Stream. Wetland. and Buffer Site / 80 - UT to Sandy Creek: 1	imensi	onal M Wetland	lorphol	logy St uffer Site	ummar / 80 - UT	y (Dim∈ I to Sand	nsions v Creek:	_	Parameters	- Cros	Parameters - Cross Sections) 850 linear feet	(suc									
			Cross Sec	Cross Section 1 (Riffle)					Cros	Cross Section 2 (Glide)	2 (Glide)					Cross	Cross Section 3 (Run)						Cross Sec	Cross Section 4 (Riffle)	(e)		
											100001-					2000		/								-	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2 M	MY3 MN	MY4 MY	MY5 MY+	+ Base	e MY1	MY2	MY3	MY4	MY5	+YM	Base	MY1	MY2	MY3	MY4	MY5 I	MY+ B	Base	MY1 N	MY2 N	MY3 N	MY4 N	MY5 M	+۲M
Record elevation (datum) used				<u> </u>																							
Bankfull Width (ft) 2	22.0 2	22.6	23.9 2.	24.0 19	19.9 32.2	12	19.6	3 20.5	19.4	21.8	20.8	23.7		22.6	18.8	20.1	22.4	22.1	23	2	24.9 2	24.5 2	24.1 2	24.2 2	22.8 2	25.1	
Floodprone Width (ft) 6	63.0 6	65.4	66.1 6	66.1 >10	>100 >100	00	200+	+ 200+	+ 200+	- 200+	200+	200+		200+	200+	200+	200+	200+	200+	2	200+ 2	200+ 2	200+ 2	200+ 2	200+ 2(200+	
Bankfull Mean Depth (ft)	1.0	1.0	0.9	1.1	1.3 1.3	1.3	1.7	1.6	1.8	1.7	1.8	1.6		1.6	1.5	1.7	1.6	1.4	1.5		1.5	1.5	1.5	1.8	1.7 1	1.7	
Bankfull Max Depth (ft)	1.7	1.6	1.8	1.9 2.	2.5 2.3	2.3	2.5	2.8	3.1	2.8	2.4	2.2		2.8	2.8	e	3.16	3.0	2.7	- 1	2.8	2.9	2.9	3.1	3.0	3.2	
Bankfull Cross Sectional Area (ft ²) 2	21.7 2	22.5	22.7 23	25.6 25	25.6 37.9	6.	33.4	1 32.8	35.3	36.7	36.4	33.9		36.4	29.0	33.5	36.5	30.4	32.5	°	36.1 3	37.8 3	37.1 4	42.7 3	39.6 3	39.7	
	22.3 2	22.7	25.2 23	22.6 >1	>12 24.8	80.	11.5	5 12.9	10.7	12.9	11.9	14.8		14.0	12.2	12.1	13.7	>12.0	15	-	16.6 `	15.8 1	15.6 1	13.7 >	>12.0 1	14.7	
Bankfull Entrenchment Ratio	2.9	2.9	2.8 2	2.8 >2	>2.2 >6	>6.0	>10.0	0 >10.0	0 >10.0	0 >10.0	9.6	>8.0		>8.0	>8.0	>8.0	>8.0	>8.0	>8.0	^	>8.0	>8.0	> 8.0	< 0.8<	> 8.0	>8.0	
Bankfull Bank Height Ratio	1.0	1.0	1.0	1.0	1.0 1.	1.0	1.1	1.1	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.1		1.0	1.0	1.0	1.0	1.1	1.0	
Based on current/developing bankfull feature ²																											
Record elevation (datum) used																											
Bankfull Width (ft)																											
Floodprone Width (ft)		μĮ				<u> </u>																					
Bankfull Mean Depth (ft)		Th	These cells may or may not	nay or m	ty not																						
Bankfull Max Depth (ft)		ye. Ye	require population in any given year. See footnote 2 below	otnote 2 t	any giver velow																						
Bankfull Cross Sectional Area (ft 2)																											
Bankfull Width/Depth Ratio																											
Bankfull Entrenchment Ratio		┢				7																					
Bankfull Bank Height Ratio																											
Cross Sectional Area between end pins (ft 2)																											
d50 (mm)	_			_	_		_	_	_															_			
]				[1						1	1	1		1					1	1			

1 = Widths and depths for monitoring resurvey will be based on the based ine bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior 2 = Based on the elevation of any dominant depositional feature that develops and is observed at the time of survey. If the baseline datum remains the only significant depositional feature that develops above or below the baseline bankfull datum then this should be tracked and quantified in these cells. performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

									Charle	Tabl s Williar	e 11b. ns Streau	Monitc n, Wetla	oring Diand	Table 11b. Monitoring Data - Stream Reach Data Summary Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek: 1,850 linear feet	ream R e / 80 - U	Reach D	ata Su _{dy} Creek	: 1,850	r inear fee	t														
Parameter			Baseline	a					MY-1					MY-2	5					MY- 3						MY- 4					Μ	MY- 5		
Dimension and Substrate . Diffle only	Min	Mean	Med	Max SD ⁴	⊢	dim		Mean	Max	sn ⁴	-	Min	Mean	heM	May	sn ⁴	-	Min	Mean	hen	Max SD ⁴	4	MiM	Mean	Mad	Max	sn ⁴	-	Mi	Mean	Med	Max	sn ⁴	-
Bankfull Width (ft)			-	-			-	_	_	_	5	23.9	24.0	24.0	24.1	;	5	-	_	-	_		19.9	_		_	-	5	25.1	28.7	28.7	32.2	;	5
Floodprone Width (ft)			-	200+			^	2			2	66.1	>133	200+	200+		2				200+	2	100+	-				2	100+	>150	200+	200+		2
Bankfull Mean Depth (ft)				1.5		-					2	0.9	1.2	1.2	1.5		2				1.8	2	1.3					2	1.3	1.5	1.5	1.7		2
¹ Bankfull Max Depth (ft)	1.7		2.8	2.8		2 1.6		2.5 2.9	9 2.9		2	1.8	2.35	2.35	2.9		2	1.9		3.1	3.1	2	2.4	2.7	3.0	3.0		2	2.3	2.8	2.8	3.2		2
Bankfull Cross Sectional Area (ft²)	21.7	28.9 31	36.1 3	36.1		2 22.5		30.5 37.8	8 37.8		2	22.7	29.9	29.9	37.1		2	25.6 3	34.15 4	42.7	42.7	2	25.6	32.6	39.6	39.6		2	37.9	38.8	38.8	39.7		2
Width/Depth Ratio	>15	>15 >	>15 >	>15	. 1	2 >15		>15 >15	5 >15		2	>15	>15	>15	>15		2	13.7 1	18.15 2	22.6	22.6	2	11.9	>12.0	0 >12.0	0 >12.0		2	14.7	19.8	19.8	24.8		2
Entrenchment Ratio	2.9	7.5 8	8.4	8<		2 2.9		>5.4 >8	8<		2	2.8	>5.4	8~	%		2	2.8	>5.4	8^	8<	2	>2.2	2.2	>2.2	2 >2.2		2	9<	7<	7<	8<		2
¹ Bank Height Ratio	1.0	1.0 1	1.0	1.0		2 1.0		1.0 1.0	0 1.0		2	1.0	1.0	1.0	1.0		2	1.0	1.0	1.0	1.0	2	1.0	1.1	1.1	1.1		2	1.0	1.0	1.0	1.0		2
Profile																																		
Riffle Length (ft)	39.0	51.5 5	51.5 6	64.0		2 53.13		75.34 78.7	7 91	14.5	9	88.9	127.7	123.7	160.1	26.9	5	88.9 1	127.7 1:	123.7 1	160.0 26.88	8 5	40	80	50	150		с	50	92.5	92.5	135		2
Riffle Slope (ft/ft)	0.003 (0.003 0.0	0.003 0.	0.003		2 0.003		0.003 0.003	0.003	0.0	9	0.004	0.008	0.007	0.016	0.004	5	0.000	0.0012 0.	0.001 0	0.003 0.001	11 5	0.004	Ö	7 0.007	7 0.01		с	0.004	0.005	0.005	0.007		2
Pool Length (ft)		198.0 15	196.0 2:	232.0 27.5		4 283.6		283.6 283.6	1.6 283.6		2	115.8	127.7	127.7	139.6		2	115.8 1	127.7 1:	127.7 1	139.6	2	45	49	50	50		с	32	78.7	96	108		e
Pool Max depth (ft)	3.1	3.5 3	3.4	4.3	4	4 0.8		1.5 1.5	5 2.3		2	2.0	2.0	2.0	2.0		2	1.4	1.65 1	1.88	1.88	2	3.1	4.6		-		з	ы	3.7	3.3	4.8		з
Pool Spacing (ft)	158.0	372.0 23	239.0 7	719.0		3 283.6		283.6 283.6	1.6 283.6		-	975.2	975.2	975.2	975.2		+	975.2 5	975.2 9	975.2 9	975.2	1	460	835	1210	0 1210		2	192	436.67	393	725		е
Pattern																																		
Channel Beltwidth (ft)	40.0	74.5 74	78.5 11	101.0 24.8		4																												
Radius of Curvature (ft)	19.0	60.5 51	58.0 11	107.0 31.5		4									o arottoC		not tunio			, and an	in toto	dimon	op local		ofilo dot	to indicat								
Rc:Bankfull width (ft/ft)	6.0	2.7 2	2.6	4.8 1.4		4										uala will	ilot typic	ally De (signific	cant shift	r auteri i data wiii not typically be conected unless visual data, uniteristorial data or prome data indicate significant shifts from baseline	a, umen Iseline		ara or pro	ollie uat	a IIIuluat	D.							
Meander Wavelength (ft)	86.0	149.3 12	121.5 20	268.0 70.1		4													-			_	_	-	_		_							
Meander Width Ratio	3.9	6.7 5	5.5 1	12.0 3.1		4																												
															Ī																			
Additional Reach Parameters																																		
Rosgen Classification			C5						C5					C5						C5						C5					0	C5		
Channel Thalweg length (ft)			1748						1748					1748	18					1748						1748					17	1748		
Sinuosity (ft)			1.06						1.06					1.06	9					1.06						1.06					1.(1.06		
Water Surface Slope (Channel) (ft/ft)			0.0013						0.0013					0.0018	18					0.0017						0.0013					0.0	0.0013		
BF slope (ft/ft)			0.0013						0.0013					0.0010	10					0.0015						0.0014					0.0	0.0014		
³ Ri% / Ru% / P% / G% / S%	5%	80% 1!	15%			5%		80% 15%	%			5%	80%	15%				5%	80% 1	15%			7%	5%	8%				5%	80%	15%			
³ SC% / Sa% / G% / C% / B% / Be%																																		
³ d16 / d35 / d50 / d84 / d95 /																																		
² % of Reach with Eroding Banks			0						0					0						0						0								
Channel Stability or Habitat Metric																																		
Biological or Other																						1			1		1							
Shadad calls indicate that these will tynically not he filled in																																		

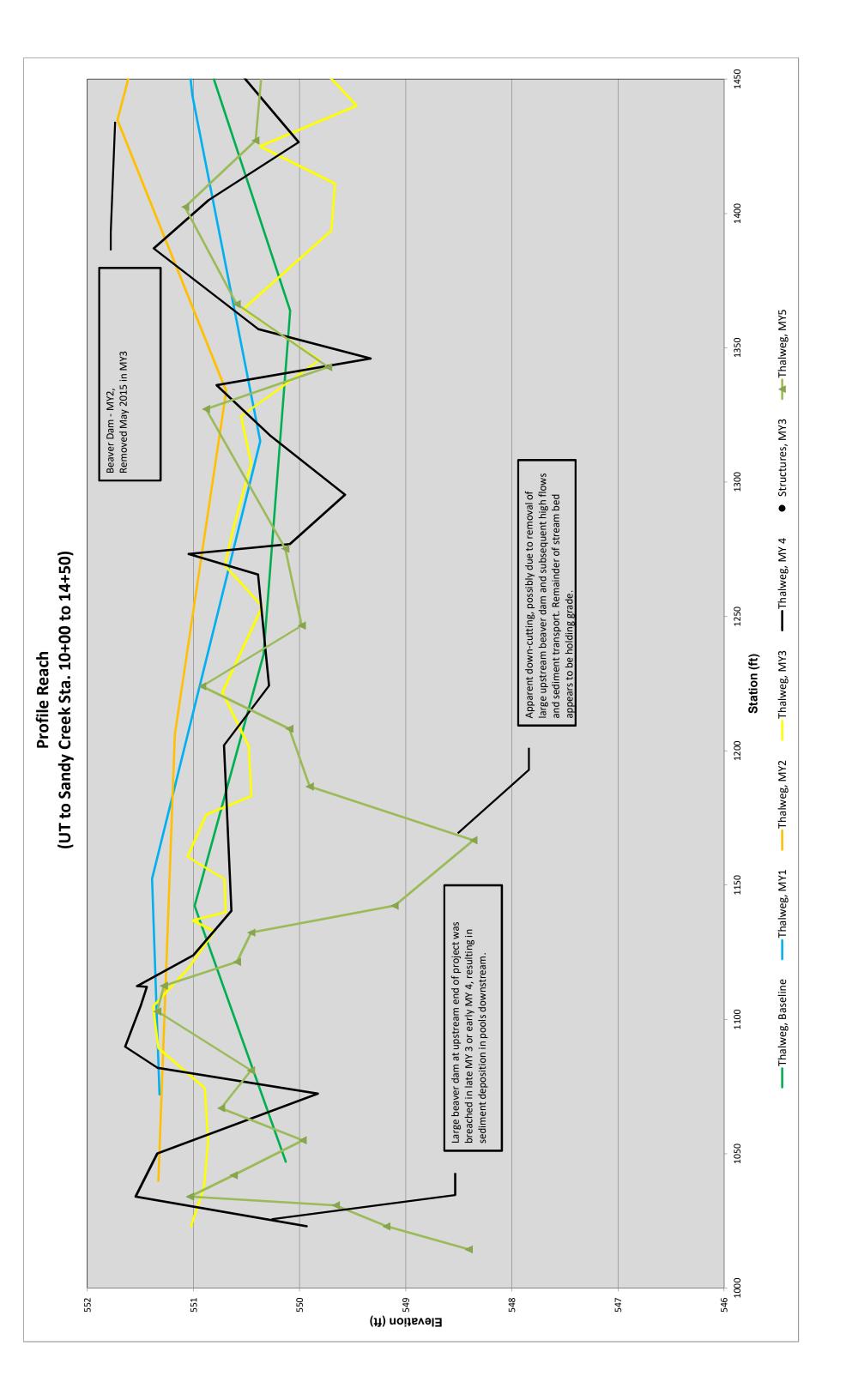
Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Gilde, Step; SitVClay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3

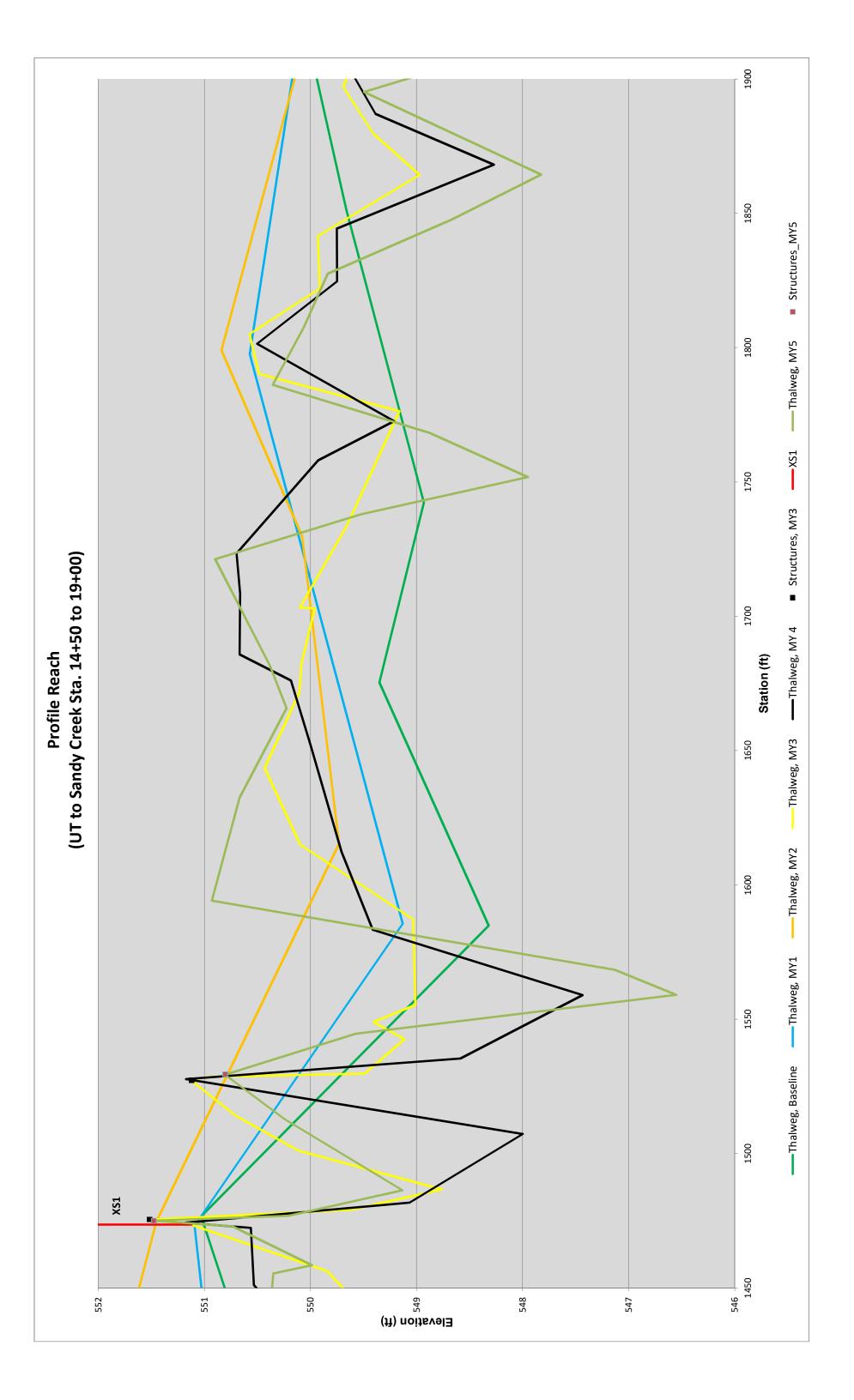

APPENDIX E

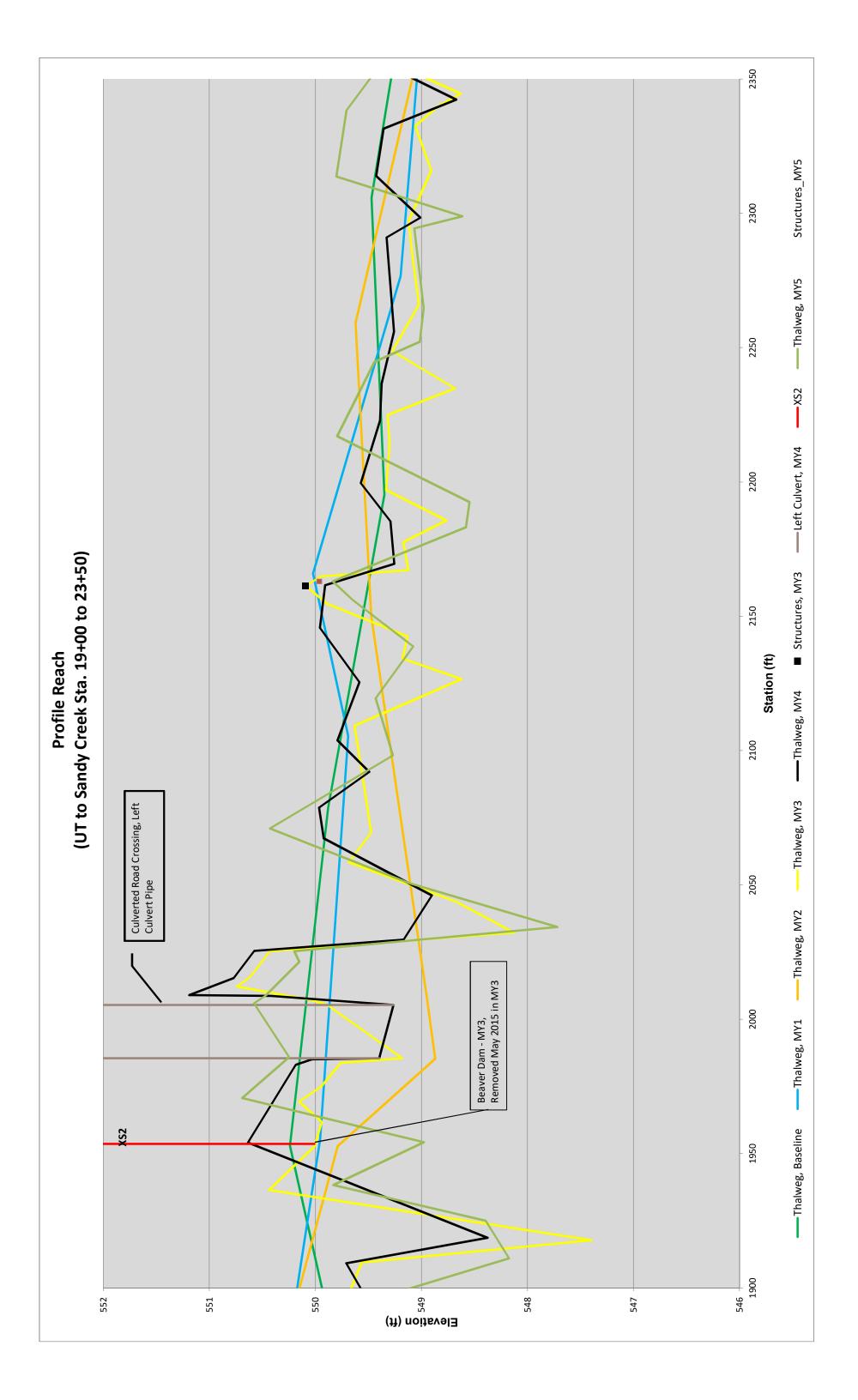
Hydrology Data

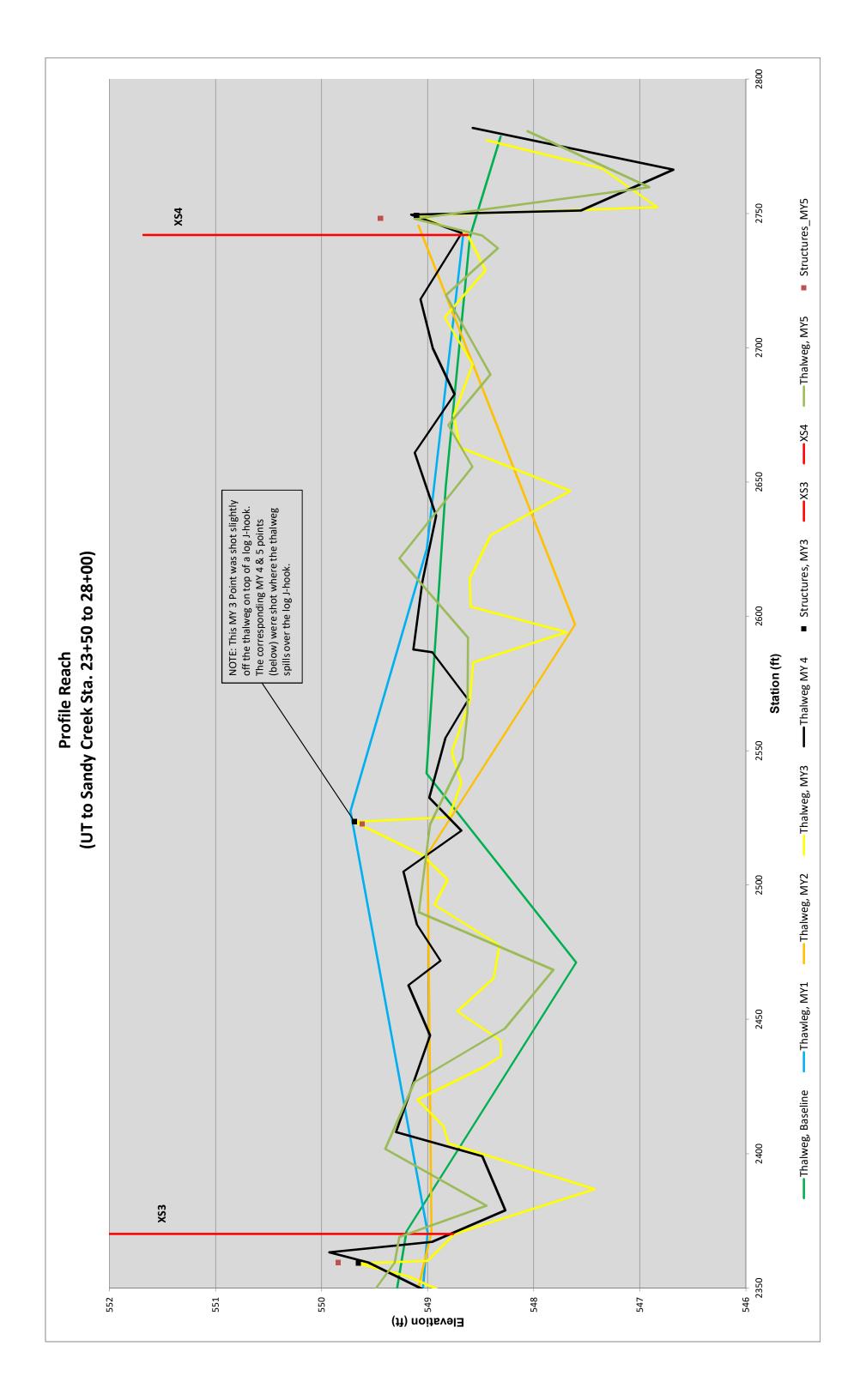
Table 12. Verification of Bankfull Events

Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek: 1,850 linear feet


iiieai ieel			
Date of Data Collection	Date of Occurrence	Method	Photo # (if available)
11/6/2013	unknown	Crest Gauge	Not Available
3/6/2014	unknown	Visual On-site (wrack)	Not Available
9/16/2014	unknown	Crest Gauge	Not Available
4/17/2015	4/17/2015	Visual On-site (active overbank event)	Not Available
6/30/2015	unknown	Visual On-site (wrack, sediment staining, alluvial deposits)	Not Available
2/18/2016	unknown	Visual On-site (wrack, sediment staining, alluvial deposits, flattened vegetation)	Not Available
7/20/2016	unknown	Visual On-site (log jam from previous high flow event)	Not Available
2/10/2017	unknown	Crest Gauge 31.5"	Not Available
7/20/2017	between 2/10/2017 and 7/17/2017	Crest Gauge 28", Visual On-site (wrack, sediment staining)	Overbank 1, 2, 3




Note: precipitation data incomplete for Jan. and Feb. 2017.


APPENDIX F

Detailed Thalweg Profile

